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Abstract

Multi-Valued Decision Diagrams (MDDs) are in-
strumental in modeling combinatorial problems
with Constraint Programming. In this paper, we
propose a related data structure called sMDD
(semi-MDD) where the central layer of the dia-
grams is non-deterministic. We show that it is easy
and efficient to transform any table (set of tuples)
into an sMDD. We also introduce a new filtering
algorithm, called Compact-MDD, which is based
on bitwise operations, and can be applied to both
MDDs and sMDDs. Our experimental results show
the practical interest of our approach.

1 Introduction
Constraint Programming (CP) is a general and flexible frame-
work for modeling and solving combinatorial constrained
problems [Rossi et al., 2006]. Many kind of constraints
have been introduced in the literature, but general forms that
are based on data structures such as tables, automatas, and
MDDs (Multi-valued Decision Diagrams) remain quite pop-
ular. For example, over the past decade, many filtering al-
gorithms have been proposed for table and MDD constraints,
respectively leading to the state-of-the-art algorithms called
Compact-Table [Demeulenaere et al., 2016] and MDD4R
[Perez and Régin, 2014]. In this paper, we focus our inter-
est on decision diagrams [Bryant, 1986] for constraint rea-
soning, which is a hot topic; see, e.g., [Andersen et al., 2007;
Hadzic et al., 2008; Hoda et al., 2010; Gange et al., 2011;
Bergman et al., 2014; Amilhastre et al., 2014; Bergman et
al., 2016; Perez and Régin, 2017; Perez, 2017].

In theory, when dealing with finite domain variables, it is
always possible to express a constraint c under the form of a
table, which simply enumerates the tuples allowed by c, or an
MDD whose paths indicate them. Clearly, tables and MDDs
have the same expressive power, but the main advantage of
MDDs is their ability to compress the set of tuples, possibly
with an exponential space-saving. Hence, when compression
is high, it is very relevant to convert tables into MDDs, by us-
ing a procedure that identifies similar prefixes and suffixes of
tuples. Unfortunately, it is known that different orderings on
the variables (columns of the table) can lead to very different

MDDs in term of size, and discovering the optimal order is
an NP-hard task.

In this paper, we are interested in using decision diagrams
for representing tables (while assuming an arbitrary ordering
on the variables). We propose to relax one strong property of
MDDs (out-determinism, which is the requirement that two
arcs going out from the same node must be labeled differ-
ently). In this respect, we propose to refine the compres-
sion procedure by targeting a diagram that is no more an
MDD. More precisely, the diagram generated by our pro-
cedure is an MVD (Multi-valued Variable Diagram) [Amil-
hastre et al., 2014], and because it admits a particular struc-
ture, basically representing two connected MDDs of approx-
imately the same size (height), we shall call this structure an
sMDD (semi-MDD).

Our contributions are summarized as follows: (i) a new
structure called sMDD, adapted to the filtering of constraints,
(ii) a new algorithm for converting any table into an sMDD,
(iii) a new filtering algorithm enforcing Generalized Arc Con-
sistency on constraints defined by sMDDs, and also MDDs,
by relying on bit-set operations, as in [Wang et al., 2016;
Demeulenaere et al., 2016], (iv) some experimental results
showing that the number of nodes in sMDDs is usually far
smaller than in equivalent MDDs, while leading to a faster
filtering process compared to previous MDD approaches
[Cheng and Yap, 2010; Perez and Régin, 2014]. Results also
show reduction of the time gap with Compact-Table.

2 Technical Background
A constraint network is composed of a set of variables and a
set of constraints. Each variable x has an associated (finite)
domain dom(x) containing the values that can be assigned
to it; this current domain is included in the initial domain
dom0(x). Each constraint c involves an ordered set of vari-
ables, called the scope of c and denoted by scp(c), and is
semantically defined by a relation rel(c) containing the tu-
ples allowed for the variables involved in c. The arity of a
constraint c is |scp(c)|. When the domain of a variable x is
(becomes) singleton, we say that x is bound.

Given a sequence 〈x1, . . . , xr〉 of r variables, an r-tuple
τ on this sequence of variables is a sequence of values
〈a1, . . . , ar〉, where the individual value ai is also denoted
by τ [xi]. An r-tuple τ is valid on an r-ary constraint c iff
∀x ∈ scp(c), τ [x] ∈ dom(x), and τ is allowed by c iff



τ ∈ rel(c). A support on c is a tuple that is both valid on
c and allowed by c. A literal is a pair (x, a) where x is a
variable and a a value. A literal (x, a) is Generalized Arc-
Consistent (GAC) on c iff there is a support τ on c such that
τ [x] = a. A constraint c is GAC iff any literal (x, a) such
that x ∈ scp(c) and a ∈ dom(x) is GAC on c.

A directed graph is composed of nodes and arcs. Each arc
has an orientation from one node, the tail of the arc, to another
node, the head of the arc. For a given node ν, the set of
arcs with ν as tail (resp., head) is called the set of outgoing
(resp., incoming) arcs of ν. A (arc-)labeled directed graph
is a directed graph such that a label is associated with each
arc. A node is in-d (in-deterministic) iff no two incoming
arcs have the same label, in-nd otherwise. A node is out-
d (out-deterministic) iff no two outgoing arcs have the same
label, out-nd otherwise. A directed acyclic graph (DAG) is
a (finite) directed graph with no directed cycles. An MVD
(Multi-valued Variable Diagrams) [Amilhastre et al., 2014],
associated with a constraint of arity r, is a layered DAG, with
one special root node at level 0, denoted by ROOT, r layers
of arcs, one layer for each variable of the constraint scope
〈x1, . . . , xr〉, and one special sink node at level r, denoted by
SINK. The arcs going from level i − 1 to level i are on the
variable xi: any such arc is labeled by a value in dom0(xi).
A valid path in an MVD is a path from the root to the sink
such that the label of each involved arc going from level i−1
to i is a value in dom(xi). The set of supports of a constraint
c defined by an MVD M corresponds to the valid paths in
M . One classical type of MVD is the Multi-valued Decision
Diagram (MDD) [Bryant, 1986], which guarantees that each
node is out-d (each node at level i has at most |dom0(xi)|
outgoing arcs, labeled with different values), but possibly in-
nd. An example is given in Fig. 1d. We now introduce the
data structure studied in this paper.
Definition 1 A semi-MDD, or sMDD, is an MVD such that
each node at a level < b r2c is out-d and each node at a level
> b r2c+ 1 is in-d.
This means that in an sMDD, a node at a level< b r2c is possi-
bly in-nd, and a node at a level > b r2c+ 1 is possibly out-nd.
Also, a node at level b r2c or b r2c+1 is possibly both in-nd and
out-nd. Level b r2c is chosen to minimize the upper-bound of
the number of nodes. An example is given in Fig. 2h.

A table constraint c is such that rel(c) is explicitly defined
by listing the tuples that are allowed by c. A MVD (resp.,
MDD and sMDD) constraint c is such that rel(c) is defined
by a MVD (resp., MDD and sMDD).

3 From Tables to Diagrams
The table of an extensional constraint c can be compactly rep-
resented by a trie [Gent et al., 2007] in which successive lev-
els are associated with successive variables in the scope of
c. A trie can be further reduced by merging nodes1, so as to
obtain an MDD.

3.1 Generating (Reduced) MDDs
Reduction algorithms for generating diagram decisions from
tables (sets of tuples) have been proposed in the literature. A

1In the spirit of the Hopcroft algorithm for DFA minimization.
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Figure 1: Reducing a Table into an MDD

first algorithm based on a breadth-first bottom-up exploration,
was proposed in [Bryant, 1986] for BDDs (Boolean Deci-
sion Diagrams), and a second algorithm, using a dictionary
and called mddify, was proposed in [Cheng and Yap, 2010;
2008] for MDDs. More recently, pReduce [Perez and
Régin, 2015] has been shown to admit a better worst-case
time complexity than mddify.

Fig. 1 illustrates the creation of an MDD in the spirit of
pReduce. Initially, we consider a constraint c defined by
the table shown in Fig. 1a. First, the trie corresponding to
this table is created2, Fig. 1b, and a (non-reduced) MDD can
be easily derived from this trie, Fig. 1c3. Then, the MDD is
reduced by successively merging nodes when possible, from
bottom to top. Merging is done by finding nodes having simi-
lar sets of outgoing arcs. Two sets of outgoing arcs are similar
if they have the same cardinality, and for each arc in one set,
there is an arc in the other set with the same label (value)
and the same head. In our example, you can observe that
nodes M , O and P have only one outgoing arc, each one la-
beled with 1 and reaching SINK. Hence, these nodes can be
merged (node MOP in Fig. 1d). The MDD resulting from
this iterative merging process is shown in Fig. 1d.

3.2 Generating sMDDs
Now, we propose to refine the reduction procedure by tar-
geting a diagram that is an sMDD. The interest is that such

2Here, for simplicity a table structure is kept in Fig. 1b.
3Dashed and plain edges stand for labels with values 0 and 1,

respectively.



structure is expected to contain less nodes (this issue is dis-
cussed later), and that efficient algorithms can be defined on
sMDDs. The algorithm we propose is composed of five main
steps, and is called sReduce. First, the initial table is split
in two main parts:

• the p-table (table for the prefixes) corresponding to a re-
striction of the table to its first b r2c columns (or vari-
ables),

• the s-table (table for the suffixes) corresponding to a re-
striction of the table to its last r − b r2c − 1 columns (or
variables),

At this point, note that all variables, except one, are involved
in one of these two partial tables. On our example with r = 5,
we obtain a p-table with 2 columns (corresponding to x1 and
x2) and an s-table with 2 columns (corresponding to x4 and
x5). The missing column (for variable x3) will be considered
in a later stage.

Second, duplicates are removed from the p-table (resp.
s-table), which is then sorted using a lexicographic (resp.
colexicographic4) order. Considering again the initial table
depicted in Fig. 1a, after these three steps, we obtain the p-
table and the s-table shown in Fig. 2a and 2d.

Third, we build some equivalent tables sharing prefixes and
suffixes (we call them p-trie and s-trie). Equivalent trees are
naturally derived from them (we call them p-tree and s-tree).
Importantly, the order of the columns is preserved, and we
start with a special root node for the p-tree whereas we finish
with a special sink node for the s-tree. An illustration is given
by figures 2b, 2c, 2e and 2f.

Fourth, for each tuple τ in the initial table, an arc is built.
It links the node in the p-tree corresponding to the end of the
prefix of τ and the node in the s-tree corresponding to the
start of the suffix of τ . This arc is labeled with the value for
the intermediate variable, which was involved neither in the
p-table nor in the s-table. We obtain a new diagram, depicted
in Fig. 2g, where arcs have been added for x3.

Fifth, “classical” reduction is performed twice. On the one
hand, from bottom to top, merging can be conducted by start-
ing from the nodes that were leaves in the p-tree. For merg-
ing, the algorithm searches for similarities between sets of
outgoing arcs. As an illustration, let us consider nodes C and
E in Fig. 2g. These two nodes have both one outgoing arc
with the same label 0 and the same head: therefore, they can
be merged (node CE in Fig. 2h). On the other hand, from
top to bottom, merging can be conducted by starting from
the nodes that had no parent in the s-tree. For merging, the
algorithm searches now for similarities between sets of in-
coming arcs. As an illustration, observe how nodes H and J
in Fig. 2g can be merged (node HJ in Fig. 2h). The graph
obtained after complete reduction is depicted in Fig. 2h.

Proposition 1 The graph obtained after executing
sReduce on any specified table is an sMDD.

Proof: Before executing merging operations, the dia-
gram (at the end of step 4) is an sMDD, by construction.
Merging conducted in the first (bottom-up) pass preserves

4Ordering is done by reading numbers from right to left.
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Figure 2: Reducing a Table into an sMDD

out-determinism of any node at a level < b r2c, while merg-
ing conducted in the second (top-down) pass preserves in-
determinism of any node at a level > b r2c+ 1.

Note that the complexity of sReduce is basically the
same as pReduce as operations are essentially the same
(sorting and merging).

One interest of sMDDs over MDDs is the potential reduc-
tion of the number of nodes. Assuming an uniform variable
domain size equal to d, the number of nodes in the initial trie
isO(dr) for the MDD while it isO(dr/2) for the sMDD. The
gain can thus be very substantial although merging renders
precise predictions difficult to make. On our example, from
the same table, the generated MDD contains 14 nodes and 19
arcs, and the sMDD 12 nodes and 18 arcs.

4 Compact-MDD

In this section, we describe a new filtering algorithm that can
be applied to any MVD (and so, to any MDD and sMDD).
It is called Compact-MDD (or CMDD), and borrows some
principles from CT [Demeulenaere et al., 2016] and MDD4R
[Perez and Régin, 2014]. Its description is given under the
form of an object-oriented programming class in Algorithm 1.



4.1 Data Structures
As fields of Class Constraint-CMDD, we first find scp
for representing the scope 〈x1, . . . , xr〉 of c and currArcs
for representing the current set of valid arcs of the di-
agram. More precisely, a reversible sparse bit-set from
Class RSparseBitSet, as described in [Demeulenaere
et al., 2016], is associated with each variable x of scp:
currArcs[x] keeps track of the valid arcs on x. Each arc
in the diagram admits an associated bit in currArcs: the
arc is valid iff the bit is set to 1. Note that this is simi-
lar to currTable that keeps track of the valid tuples in CT.
As an example, for the MDD in Fig. 1d, currArcs[x2] and
currArcs[x3] respectively correspond to sequences of 4 and
5 bits (all set to 1, initially). In this data structure, one field is
words, an array of w-bit words (e.g., w = 64), which defines
the current value of the bit-set. Each reversible sparse bit-set
has another field: a bit-set called mask that is used to perform
and record intermediate computations. Interestingly, opera-
tions on mask are optimized so as to only consider non-zero
words (i.e., words with not all bits set to 0).

We now succinctly describe the methods in
RSparseBitSet. Method isEmpty() simply checks
whether the number of non-zero words is different from
zero. Method clearMask() sets to zero all words of mask
whereas Method reverseMask() reverses all words of
mask. Method addToMask() applies a word by word
logical bit-wise or operation. Finally, Method intersectIn-
dex() checks if a given bit-set intersects with the current
bit-set: it returns the index of the first word where the
intersection is non-zero, -1 otherwise. For the sake of
simplicity, we shall use currArcs[x][i] as a shortcut for
currArcs[x].words[i], and currArcs[x].intxn as a shortcut
for currArcs[x].intersectIndex.

We also have three fields Sval, Ssup and lastSizes in the
spirit of STR2 [Lecoutre, 2011]. The set Sval contains vari-
ables whose domains have been reduced since the previous
call to CMDD on c. To set up Sval, we need to record the
domain size of each variable x right after the execution of
CMDD on c: this value is recorded in lastSizes[x]. The
set Ssup contains unbound variables whose domains contain
each at least one value for which a support must be found.
These two sets allow us to restrict loops on variables to rele-
vant ones. To ease computations, at each level we find three
types of precomputed bit-sets: these bit-sets are never modi-

e1 e2 e3 e4

supports[x4, 0] 1 0 1 1
supports[x4, 1] 0 1 0 0

arcsT[GIJ, x4] 1 0 0 0
arcsT[H,x4] 0 1 0 0
arcsT[L, x4] 0 0 1 0
arcsT[K,x4] 0 0 0 1

arcsH[x4,MOP ] 1 0 0 0
arcsH[x4, NR] 0 1 1 0
arcsH[x4, Q] 0 0 0 1

Figure 3: Data structures related to arcs on x4 of Fig. 1d
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Figure 4: Updating the MDD from Fig. 1d after x3 6= 1 ∧ x4 6= 1

fied. First, supports[x, a] indicates for each arc on the vari-
able x whether or not the value a is initially supported by this
arc (bit set to 1 iff a is supported). Second, arcsT[ν, x] and
arcsH[x, ν′] indicates for each arc on x whether ν and ν′ are
respectively the tail and the head of this arc. Fig. 3 displays
these structures associated with x4 in the MDD depicted in
Fig. 1d. Finally, we have dynamic bit-sets for handling so-
called residues. We shall see their role when describing the
algorithm.

4.2 Algorithm
The main method in Constraint-CMDD is enforceGAC().
After the initialization of the sets Sval and Ssup, calling up-
dateGraph() allows us to update the graph, and more specifi-
cally currArcs to filter out (indices of) arcs that are no more
valid. Once the graph is updated, it is possible to test whether
each value has still a support, by calling filterDomains(). If
ever a domain wipe-out (failure due to a domain becoming
empty) occurs, an exception is thrown during the update of
the graph (and so, this is not directly managed in this main
method). At the end of enforceGAC(), lastSizes is up-
dated in view of the next call.

Updating the Graph
As in MDD4R, the goal of updateGraph() is to remove the
arcs that are no more part of a valid path. An arc can be:



(i) trivially removed when the value of the label of the arc
has been removed from the variable domain (since the previ-
ous call) (ii) or untrivially removed when all paths involving
the arc are no more valid. Method updateGraph() follows
this observation: it identifies first the arcs that can be triv-
ially removed before identifying those that can be untrivially
removed. Fig. 4 illustrates the whole updating process, con-
sidering the effect of having two deleted values on the MDD
depicted in Fig. 1d. We shall refer to this illustration all along
the description of this part of the algorithm.

In Method updateGraph(), after initializing all masks as-
sociated with the variables in the scope of the constraint, all
arcs that can be trivially removed are handled by calling up-
dateMasks(). For each variable x ∈ Sval, i.e., each variable x
whose domain has changed since the last time the filtering al-
gorithm was called, updateMasks() operates on the associated
masks. This method assumes an access to the set of values ∆x

removed from dom(x) since the last call to enforceGAC().
There are two ways of updating the masks (before updating
currArcs from these masks, later): either incrementally or
from scratch after resetting as proposed in [Perez and Régin,
2014]. This is the strategy implemented in updateMasks(), by
considering a reset-based computation when the size of the
domain is smaller than the number of deleted values. In case
of an incremental update (line 16), the union of the arcs to be
removed is collected by calling addToMask() for each bit-set
(of supports) corresponding to removed values, whereas in
case of a reset-based update (line 19), we perform the union
of the arcs to be kept. To get masks ready to apply, we just
need to reverse them when they have been built from present
values. Unlike CT, the update of currArcs from the com-
puted masks is not done immediately. Fig. 4a shows in gray
the arcs that are added to the masks.

Last but not least, we need now to determine which arcs
can be untrivially removed: this is achieved by calling the
methods propagateDown() and propagateUp(), which, simi-
larly to MDD4R, perform two passes on the diagram. During
the downward (resp., upward) pass, each level is examined
from the root (resp., sink) to the sink (resp., root)5.

In Method propagateDown(), for a specified variable xi,
provided that some arcs on xi have been removed (the pres-
ence of arcs trivially removed are tested at Line 24 with
xi ∈ Sval, and the presence of arcs untrivially removed are
given by the Boolean variable localChange), we have to
process (and propagate) them. To start, currArcs is first up-
dated (Line 25), and if no more arcs on xi remain, a backtrack
is forced because there is necessarily a domain-wipe-out. If
xi is not the last variable in the scope of the constraint, we
have to deal with xi+1. Specifically, every node6 ν that is the
tail of a currently valid arc on xi+1 is tested: when there is no
more valid arcs on xi with ν as head, all arcs on xi+1 with ν
as tail are then untrivially removed. In other words, if there
is no more valid incoming arc for a node ν at level i, then all
outgoing arcs of ν become invalid: this is implemented by the

5Actually, we can start propagation from the first and last un-
bound variables. For experiments, we used this code optimization.

6Those are maintained in practice in a reversible sparse-set as in
[Perez and Régin, 2014].

Algorithm 1: Class Constraint-CMDD
1 Method enforceGAC()
2 Sval ← {x ∈ scp : lastSizes[x] 6= |dom(x)|}
3 Ssup ← {x ∈ scp : |dom(x)| > 1}
4 updateGraph()
5 filterDomains()
6 foreach variable x ∈ Sval ∪ Ssup do
7 lastSizes[x]← |dom(x)|

8 Method updateGraph()
9 foreach variable x ∈ scp do

10 currArcs[x].clearMask()

11 updateMasks()
12 propagateDown(x1, false)
13 propagateUp(xr, false)

14 Method updateMasks()
15 foreach variable x ∈ Sval do
16 if |∆x| < |dom(x)| then // Incremental update
17 foreach value a ∈ ∆x do
18 currArcs[x].addToMask(supports[x, a])

19 else // Reset-based update
20 foreach value a ∈ dom(x) do
21 currArcs[x].addToMask(supports[x, a])

22 currArcs[x].reverseMask()

23 Method propagateDown(xi, localChange)
24 if xi ∈ Sval or localChange then
25 currArcs[xi].removeMask()
26 if currArcs[xi].isEmpty() then
27 throw Backtrack
28 if xi 6= xr then
29 localChange← false
30 foreach node ν ∈ {ν :

currArcs[xi+1].intxn(arcsT[ν, xi+1]) 6= −1} do
31 j ← residuesH[xi, ν]

32 if currArcs[xi][j] & arcsH[xi, ν][j] = 064 then
33 j ← currArcs[xi] .intxn(arcsH[xi, ν])
34 if j 6= −1 then
35 residuesH[xi, ν]← j
36 else
37 currArcs[xi+1] .addToMask(arcsT[ν, xi+1])
38 localChange← true

39 propagateDown(xi+1, localChange)
40 else if xi 6= xr then
41 propagateDown(xi+1, false)

42 Method propagateUp(xi, localChange)
/* Similar to propagateDown with x1 instead of xr,

xi−1 instead of xi+1, inverted use of arcsT and

arcsH, inverted use of residuesT and residuesH. */

43 Method filterDomains()
44 foreach variable x ∈ Ssup do
45 foreach value a ∈ dom(x) do
46 i← residues[x, a]

47 if currArcs[x][i] & supports[x, a][i] = 064 then
48 i← currArcs[x].intxn(supports[x, a])
49 if i 6= −1 then
50 residues[x, a]← i
51 else
52 dom(x)← dom(x) \ {a}



code at Lines 29..38. Note that the search of supporting arcs
is improved by keeping track in residuesH of the last valid
incoming arc, and starting with it. This increases the odds
of not testing too many words of currArcs. Also, note how
the variable localChange becomes true as soon as an arc is
untrivially removed.

Fig. 4b shows the behavior of downward propagation on
our example. For the two first levels, nothing happens. How-
ever, at the level of x3, we can see that all incoming arcs of
the node L have been removed. Hence, the outgoing arcs of L
are added to the mask associated with the next level, and re-
moved when reaching this level. On the other hand, the node
GIJ has still one valid incoming arc. Fig. 4c shows the re-
sult of upward propagation (after the downward one has been
completed).

Filtering Domains
The process of filtering domains is very similar to that de-
scribed in CT [Demeulenaere et al., 2016]. This is given by
Method filterDomains() in Algorithm 1. For each remaining
unbound variable x in Ssup, and each value a in dom(x), the
intersection between the valid arcs on x, currArcs[x], and
the arcs labeled with value a, supports[x, a], determines if
a is still supported. An empty intersection means that a can
be deleted, at Line 52. This is correct because all “remaining”
arcs in currArcs[x] are necessarily part of a valid path in the
graph. The search of supports starts by using residues.

Back to our example, remaining arcs as defined by
currArcs corresponds to the MDD depicted in Fig. 4d. Re-
garding x5, currArcs[x5] is 1001. Because supports[x5, 0]
is 0101 and supports[x5, 1] is 1010, we can deduce (from
bitwise intersections) that both values are still valid for x5.

One can show that CMDD enforces GAC (proof omitted,
due to lack of space). Overall, the worst-case time complex-
ity of CMDD is O(max(n, d)r a

w ), where r is the arity, d the
greatest domain size, n (a) the maximum number of nodes
(arcs) per level, andw the size of the computer words. Indeed,
updateMasks(), propagateDown()+propagateUp() and filter-
Domains() are respectively O(dr a

w ), O(nr a
w ) and O(dr a

w ).
It has to be compared with the worst-case time complexity of
CT, which is O(dr t

w ) with t being the size of the table.
Interestingly enough, the main features of diagrams gener-

ated by sReduce are substantially different from those gen-
erated by pReduce: the number of nodes can be dramati-
cally lower while the number of arcs can be slightly higher
(this will be confirmed by our experimental results). If we
reasonably assume that d < n, the complexity of CMDD
becomes O(rn a

w ). Hence, what we can expect is that exe-
cuting CMDD on sMDDs will be beneficial (because highly
decreasing n has a stronger impact than slightly increasing
a).

5 Experimental Results
In our system, we have implemented pReduce, MDD4R
[Perez and Régin, 2014], CT [Demeulenaere et al., 2016],
and the two algorithms proposed in this paper, namely,
sReduce and CMDD. We have conducted an experimen-
tation on the 4, 111 available XCSP3 instances [Boussemart
et al., 2016] that only contain table constraints. We have

compared the relative efficiency of MDD4R (after execut-
ing pReduce to convert tables), CMDDp (i.e., CMDD af-
ter executing pReduce), CMDDs (i.e., CMDD after exe-
cuting sReduce) and CT (on the original tables). We have
filtered out the instances taking less than 2 seconds or lead-
ing to a time out (10 minutes) for all algorithms. Results
are reported using performance profiles [Dolan and Moré,
2002]. A performance profile is a cumulative distribution
of the improved performance of an algorithm s ∈ S com-
pared to other algorithms of S over a set I of instances:
ρs(τ) = 1

|I| × |{i ∈ I : ri, s ≤ τ}| where the performance

ratio is defined as ri, s =
ti, s

min{ti, s|s∈S} with ti, s the value of
the mesured unit (here, number of nodes, number of edges or
time) obtained with algorithm s ∈ S on instance i ∈ I . A
ratio ri, s = 1 thus means that s is the best on instance i.

We first compared sReduce with pReduce. Similar ex-
ecution times were observed for sReduce and pReduce.
Concerning the size of the diagrams, Fig. 5 shows two perfor-
mance profiles that allow us to compare globally the number
of nodes and arcs in the generated MDDs and sMDDs for all
the tables involved in our benchmark (around 230, 000 tables
of arity greater than or equal to 3). As we predicted, the num-
ber of nodes is significantly reduced in the generated sMDDs
(more than a factor 8 for at least 70% of the tables), while the
number of arcs tends to be slightly higher.

On the left of Fig. 6, execution times of MDD4R, CMDDp

and CMDDs are compared. Times are given for a complete
exploration of the search space (i.e., to find all solutions), us-
ing each time the same variables and values choices. Clearly,
CMDD outperforms MDD4R, even when it is executed on
“simple” MDDs. Using sMDDs just makes it more robust.
For example, CMDDs, CMDDp and MDD4R are at least 2
times slower than the best (virtual) algorithm on 5%, 20%
and 35% of the instances, respectively. On the right of Fig.
6, CT is additionally considered. In general, CT still outper-
forms decision diagram approaches, but the gap is reduced:
40% of the instances are solved by CMDDs within a factor 2
compared to the time taken by CT, instead of 5% previously
with MDD4R.

It is important to note that these global results do not tell the
entire story. Indeed, when the compression is high, using de-
cision diagrams remains the appropriate approach. For exam-
ple, on the instance pigeonsPlus-11-06, the execution
times of CT, MDD4R, CMDDp and CMDDs are respectively
T.O.(> 600s), 328s, 128s and 126s. This confirms the real
interest of approaches based on decision diagrams.

Figure 5: Comparing the size of the generated MDDs and sMDDs



Figure 6: Comparing MDD4R, CMDDp, CMDDs and CT

6 Conclusion
We have proposed an original variant of decision diagrams
for representing (table) constraints, and have introduced an
original efficient filtering algorithm, based on it. The new al-
gorithm, CMDD, outperforms the state-of-the-art algorithm
MDD4R, and is close to CT in general. Interestingly, when
the compression is high, CMDD becomes the fastest ap-
proach. As future work, we would like to study if sMDDs
could represent other constraints. We also plan, following
the extension of CT to Basic Smart Table [Verhaeghe et al.,
2017], to adapt the CMDD algorithm to handle Basic Smart
MVD, i.e., MVD with edges labelled by a unary expressions.

Acknoledgements
The second author is supported by the project CPER Data
from the ”Hauts-de-France”.

References
[Amilhastre et al., 2014] Jerome Amilhastre, Helene

Fargier, Alexandre Niveau, and Cédric Pralet. Compiling
CSPs: A complexity map of (non-deterministic) multival-
ued decision diagrams. International Journal on Artificial
Intelligence Tools, 23(04), 2014.

[Andersen et al., 2007] Henrik Andersen, Tarik Hadzic,
John Hooker, and Peter Tiedemann. A constraint store
based on multivalued decision diagrams. In Proceedings
of CP’07, pages 118–132, 2007.

[Bergman et al., 2014] David Bergman, André Ciré, and
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