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Abstract
Decision trees are among the most popular classi-
fication models in machine learning. Traditionally,
they are learned using greedy algorithms. However,
such algorithms have their disadvantages: it is dif-
ficult to limit the size of the decision trees while
maintaining a good classification accuracy, and it is
hard to impose additional constraints on the models
that are learned. For these reasons, there has been
a recent interest in exact and flexible algorithms
for learning decision trees. In this paper, we intro-
duce a new approach to learn decision trees using
constraint programming. Compared to earlier ap-
proaches, we show that our approach obtains better
performance, while still being sufficiently flexible
to allow for the inclusion of constraints. Our ap-
proach builds on three key building blocks: (1) the
use of AND/OR search, (2) the use of caching, (3)
the use of the CoverSize global constraint proposed
recently for the problem of itemset mining. This al-
lows our constraint programming approach to deal
in a much more efficient way with the decomposi-
tions in the learning problem.

1 Introduction
Decision trees are popular classification models in machine
learning. Benefits of decision trees include that they are rela-
tively easy to interpret and that they provide good classifica-
tion performance on many datasets.

Several methods have been proposed in the literature for
learning decision trees. The greedy methods are the most
popular ones. These methods recursively partition a dataset
into two subsets based on a greedily selected attribute until
some stopping criterion is reached (such as a minimum num-
ber of examples in a leaf, or a unique class label in these
examples). While in practice these methods obtain a good
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prediction accuracy for many types of data, unfortunately,
they provide little guarantees. As a result, the trees learned
using these methods may be unnecessarily complex, may be
less accurate than possible, and it is hard to impose additional
constraints on the trees.

To address these weaknesses, researchers have studied
the inference of optimal decision trees under constraints
[Nijssen and Fromont, 2007; Bertsimas and Dunn, 2017;
Aglin et al., 2020]. These approaches ensure that under well-
defined constraints and optimization criteria, an optimal tree
is found.

Our paper proposes a new, more scalable approach based
on Constraint Programming (CP) for learning decision trees
with a fixed maximum depth minimizing the classification
error. Our approach combines these key ideas: the use of
branch-and-bound in a CP solver, the use of the COVERSIZE
global constraint [Schaus et al., 2017], the use of an AND/OR
search tree [Dechter and Mateescu, 2007] and the use of
caching as introduced in DL8 [Nijssen and Fromont, 2007].
This allows our constraint programming approach to deal in
a much more efficient way with the decompositions in the
learning problem. We will show that the combination of these
different ideas leads to a model that is more efficient than
other approaches proposed in the literature.

Moreover, the fact that our approach is integrated in a gen-
eral constraint programming system means that it is relatively
easy to extend the approach with other constraints in the fu-
ture.

2 Related Work
Related to this work are the alternative approaches for find-
ing optimal decision trees. There are a number of alternative
definitions for the problem of finding optimal decision trees,
each using different constraints and optimization criteria.

The most popular setting studied in recent papers [Aghaei
et al., 2019; Bertsimas and Dunn, 2017; Verwer and Zhang,
2019; Aglin et al., 2020] is the one in which a decision tree
of bounded depth is learned by maximizing the accuracy on
a given training dataset. The limit on depth allows modeling
the problem as a MIP problem with a fixed number of vari-
ables. Constraints can be added, as long as they are linear;
this includes constraints on fairness [Aghaei et al., 2019] or



on the number of examples in the leafs [Bertsimas and Dunn,
2017]. We will use this problem setting in this work.

A slightly different setting was studied in the DL8 algo-
rithm [Nijssen and Fromont, 2010]. DL8 builds on top of
itemset mining algorithms to find decision tree paths, and
uses dynamic programming to build a decision tree from
these paths. Effectively, it uses itemsets as the key of a
caching data structure. As a consequence of the use of item-
set mining, DL8 does not require a specific constraint on the
depth of the decision tree; it uses a minimum support con-
straint to limit the size of the search space. This approach can
be used on constraints that are not linear in nature. From this
approach, we will adapt its link to itemset mining, and its use
of caching.

To the best of our knowledge, CP has not yet been used in
the setting where accuracy is optimized. Two earlier studies
[Bessiere et al., 2009; Narodytska et al., 2018] did, however,
study the setting in which one finds the smallest decision tree
consistent with a training dataset (i.e. the error of the deci-
sion tree has to be zero). As training data can be noisy and
inconsistent, and hence finding a tree of zero error can be ei-
ther impossible or undesirable, this setting is less common in
the machine learning literature.

Similar to DL8, we will rely in this work on the fact that
decision tree learning problems have many decompositions.
We will exploit these using AND/OR search, which was stud-
ied extensively by Dechter et al. [Dechter and Mateescu,
2004]. AND/OR search is not common in CP systems yet,
and has not been used in decision tree learning yet; it has
recently been exploited in the context of stochastic CP how-
ever [Babaki et al., 2017].

3 Technical Background

3.1 Definition of the Problem

To simplify the exposition we restrict our attention to binary
data. Continuous data can be discretized and binarized as
proposed by Breiman et al. [Breiman, 1984]; this observation
was also exploited in earlier studies [Nijssen and Fromont,
2007; Verwer and Zhang, 2019].

We represent our data using an n × m binary matrix D.
Di represents the ith row of the data, or, following itemset
mining terminology, the ith transaction of D. The number of
transactions is thus n. The columns of the matrix represent
the m features or items of the transactions. We assume in
this work that each transaction belongs to one of two classes,
represented by 0 and 1. The classes are stored in a vector v of
size n. Hence, the database can be split into D+, a matrix of
size n+×m, containing all the transactions from D associated
to class 1, and D−, a matrix of size n− ×m, containing the
ones associated to class 0.

In this work we are interested in finding decision trees.
Each internal node w of a decision tree is associated to a fea-
ture (called the decision of the node) d[w] ∈ {1, . . . ,m};
each leaf is associated to a Boolean b[w], representing the
prediction for that leaf. We will use the function F (r, t) to
represent the predicted class for transaction t on a tree with

root r, defined recursively as

F (w, t) =

 b[w] if w is a leaf;
F (left(w), t) if Dt,d[w] = 1;
F (right(w), t) if Dt,d[w] = 0.

(1)

Here left(w) (resp. right(w)) returns the left-hand (resp.
right-hand) subtree of node w.

We define the depth of a decision tree to be the maximum
number of features on any path from the root of the tree to-
wards a leaf. Given a maximum depth, our goal is to find
a decision tree that minimizes the number of misclassified
transactions (i.e. transactions t where v[t] 6= F (r, t)):

min

n∑
t=1

[F (r, t) 6= v[t]]. (2)

We allow for the additional specification of a constraint on
the minimum number of examples Nmin in each leaf of the
tree [Bertsimas and Dunn, 2017; Nijssen and Fromont, 2010].

An extension of the problem is to consider more than two
classes (multi-class decision trees). We will limit our discus-
sion to binary classes, but the extension towards data with
more than two classes is relatively straightforward.

3.2 The COVERSIZE Constraint

To determine the accuracy of a decision tree, we need to de-
cide in which nodes of the decision tree a transaction ends
up. A correspondence can be drawn here with the cover
of itemsets in itemset mining [Nijssen and Fromont, 2007;
Nijssen and Fromont, 2010]. We exploit this correspon-
dence by adapting the COVERSIZE global constraint [Schaus
et al., 2017] to the context of learning decision trees. The
original COVERSIZE has the following parameters: an ar-
ray of Boolean variables (one variable for each feature), the
database, and a counter variable, and is defined as follows:

COVERSIZE([I1, . . . , Im], D, c)⇐⇒

c =

∣∣∣∣∣ ⋂
Ii=1

{t ∈ {1, . . . , n} | Dt,i = 1}

∣∣∣∣∣
The goal of the constraint is to link an itemset to the number
of transactions containing the itemset. The itemset is repre-
sented by the Boolean array [I1, . . . , Im]: Boolean Ii is true if
and only if feature i is included in the itemset. A transaction
contains an itemset if and only if every feature in the itemset
has value 1 in the transaction.

In decision trees, we need to be able to test whether an
item is absent in a transaction. Also, we know in advance
how many decisions are at most selected for each leaf. For
these reasons we needed to adapt the standard COVERSIZE
constraint. The adaptation, called COVERSIZESR, takes two
sparse sets of decisions (features), a counter variable and a
database as input. The two sets represent the sets of features
respectively required to be included in and excluded from a
transaction.
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Figure 1: Representation of a perfect decision tree of depth 3

f2?

f3? f5?

+ f1? + -

+ -

yes
no

(a) Proper binary tree

f2?

f3? f5?

f0? f1? f0? f0?

/ + + - / + / -

(b) Equivalent perfect binary tree

Figure 2: Example of the use of the dummy feature f0 to transform
the proper binary tree into a perfect binary tree

4 CP Modeling of the Problem
4.1 Model of the Problem
In this section, we introduce the variables and constraints
used in our model. Fig. 1 shows a visualization of our model
for trees of a maximum depth of 3.

Note that in our model we assume that a decision tree is a
perfect tree. This assumption is motivated by the existence of
a mapping of any proper binary tree (i.e. a tree where each
node has exactly 0 or 2 children) into a perfect one (i.e. a
proper binary tree with all the leaves at the same level): we
add a dummy feature f0, not belonging to any of the transac-
tions, to the model for unused decision nodes. A node with
this value therefore has no transaction from the database that
ends up in its left branch. Figure 2 shows how a proper tree
can be made perfect by the use of the dummy feature.

The nodes (N ) of a perfect decision tree can be partitioned
into two groups: the decision nodes (ND), which are asso-
ciated to a decision and which have children, and the leaves
(NL), which do not have children. The decision nodes (ND)
can be further partitioned into the end-nodes N E , which do
not have decision nodes as children, and the nodes NN ,
which do. Variables and constraints are defined accordingly.

In our model, the number of variables and constraints are
independent from the number of transactions in the database
and the number of features. In fact, the number of variables
and constraints only depend on the number of nodes in the
tree.

Variables
In our model we have variables with the following domains.
Each decision node has a decision variable d to model the
decision feature. Its value can be 0 (representing the dummy
feature f0) or between 1 and m (representing one of the actual
features f1 to fm). Two counters, c+ and c−, are defined for
each node of the tree. They are used to keep track of how
many transactions respectively from D+ and D− match the
decisions of the ancestors of the node. A third counter c,
defined at the leaves, tracks the total number of transactions.
The minimum number of transactions in each leaf is enforced
by constraining the domain of c from Nmin to |D|. Value
0 also belongs to the domain and is meant to be used only
when the parent of the node is inactive (i.e. when its decision
is f0). An additional variable e, defined for each node, keeps
track of the error of the sub-tree rooted at that node. Our
model does not have an explicit variable for the class of the
leaves. However, this can be easily deduced from the solution
by taking the class associated with the highest counter.

Constraints
On these variables, we define the following constraints.

First, ∀i ∈ NL, constraint c+[i] + c−[i] = c[i] links the
counters. Second, ∀i ∈ ND, the counters at the decision
nodes are linked to the counters of their children (c+[i] =
c+[left(i)] + c+[right(i)], c−[i] = c−[left(i)] + c−[right(i)]).
Third, the value of e[i] is defined, ∀i ∈ NL, to be the min-
imum between the class counters (e[i] = min{c+[i], c−[i]})
and, ∀i ∈ ND, to be the sum of the errors from the children of
i (e[i] = e[left(i)]+e[right(i)]). To compute the values of the
counters, we need to know which transactions match the deci-
sions of the ancestors of the leaf. To this end, ∀i ∈ NL, two
COVERSIZESR global constraints, are added, one for each
class (D+ and D−). The decision variables of the ancestors
(an ancestor is either the parent of the node or the parent of
an ancestor) are divided into the two required disjoint sets.

The next two constraints ensure the decision tree has no
useless node. A node is useless if the decision taken in
it was already taken in one of the ancestor nodes. An
ALLDIFFERENTEXCEPT0 is used at each end-node (∀i ∈
N E ) on the ancestors and the end-node to avoid this. A node
is also useless if all the leaves below have the same class.
This is avoidable if we constrain the error at the node to
be strictly higher than the error of the subtree (d[i] 6= 0 ⇒
min{c+[i], c−[i]} > e[i], ∀i ∈ ND). Finally, when a deci-
sion node is inactive, all the decision nodes below should be
inactive as well (d[i] = 0⇒ (d[left(i)] = 0∧d[right(i)] = 0),
∀i ∈ NN ).

These constraints are enough to guarantee an optimal, well-
formed tree (with no dummy decision feature being a parent
from a non-dummy decision and with no decision leading to
only one classification).

Objective
The objective is to minimize the sum of the errors at the
leaves, which is stored in e[root].

Redundant Constraints
We add a number of redundant constraints to make the search
more efficient.



d[0] = fi

d[1] = fj1 d[2] = fk1

d[0] = fi

d[1] = fj1 d[2] = fk2

(a) Independence of subtrees

d[0] = fi

d[1] = fj d[2]

d[0] = fj

d[1] d[2] = fi

d[0] = fj

d[1] = fi d[2]

(b) Redundant subtrees; identically shaded subtrees are identi-
cal

Figure 3: Decompositions

4.2 Search
The motivation behind the use of a specific search strategy is
to exploit the tree-decomposition into subproblems. During
search each node of the search tree is associated to a subtree
of the decision tree being built. This subtree, identified by the
node id currProblem, is always rooted on a decision node.
The assignment of the decision variables occurs in top-down
fashion. Therefore in a given node of the search tree, we can
always assume every node in ancestors(currProblem) has
been assigned.

Big Picture
Our search combines three techniques: AND/OR search
trees, branch-and-bound optimization, and memorization.
Each of them aims to answer one of the specificities of the
problem.

Subtree Independence
Given a subtree with its root decision assigned, its two chil-
dren are totally independent from one another. Any solution
from the left child combined with any solution from the right
child leads to a solution of the initial subtree (Fig. 3a). How-
ever our goal is to find the best solution and not one solu-
tion. Moreover our objective function is the sum of a cost
computed in each of the leaves, independently. Therefore,
the optimal solution, given a root and ancestors’ decisions al-
ready assigned, can be computed independently by comput-
ing the optimal left child, then the optimal right child and fi-
nally combine them. The AND/OR search tree [Dechter and
Mateescu, 2007; Marinescu and Dechter, 2004] framework
is well suited for this kind of decomposable problem. The
search is composed of two types of search nodes: the OR
nodes and the AND nodes.

The AND node is responsible for computing the optimal
value of the left child, then the right child, and finally returns
the composed solution. The OR node tests all the possible
values for the root decision variable of currProblem and re-
turns the best subtree.

Subtree Equality
Two subproblems are equivalent whenever the set of deci-
sions on the paths towards these nodes (the itemsets corre-

sponding to the sets of decisions) are identical. Figure 3b
shows how some subtrees can be the same in two different
solutions due to paths that represent the same itemset. This is
taken care of by using a caching system similar to the one
used in the DL8 dynamic programming approach [Nijssen
and Fromont, 2007]. Two subtrees are equivalent if they share
the same assigned prefix. The prefix of node i is composed of
the values assigned to the decisions of the ancestors. A hash
is computed from these decisions and serves as a key to store
and retrieve the optimal subtree from storage (hashMap). In
addition to the decision in the root of the subtree, its cost is
also stored, easing the computation. The search for an al-
ready computed solution happens at the beginning of an OR
node. A new solution is stored when a new complete optimal
subtree is computed, i.e. at the end of the OR node.

Minimization
In order to decrease the number of explored search nodes,
bound-based pruning is added to the search. At each of the
search nodes, the upper bound of the allowed cost is prop-
agated from node to node. During an OR node, this upper
bound is decreased each time a better solution is found and
the best cost found so far is set as upper bound of the error
of the subtree. During an AND node, the propagated upper
bound is first propagated to the computation of the first child.
If the result of this first child is above this propagated upper
bound, then there is no need to compute the right child since
any solution would be above the propagated upper bound.

5 Results
We compared our methods to DL8 [Nijssen and Fromont,
2007] and BinOCT [Verwer and Zhang, 2019], two methods
addressing the same problem. Our method outperforms these
two others on most of the instances. It could find and prove
optimality on roughly 75% of the instances within the time
limit. The best solution found was reached by our method
in almost all cases. However, DL8 performs better on small
instances. The large difference between BinOCT and our
method can be explained by the benefits of the AND/OR
search that is not used by BinOCT. The gap with DL8 can be
partially explained by the cost pruning. It can potentially also
be explained by the itemset mining algorithms used: DL8
lacks the optimizations found in the CoverSize constraint.
Our experiments also evaluate the effects of some of the tech-
niques used to solve the problem, such as the use of a cache.

6 Conclusion
In summary, our paper presents a new approach for efficiently
creating an optimal decision tree of limited depth. This ap-
proach based on CP combines the COVERSIZE global con-
straint, the concept of AND/OR tree and caching. On most
of the benchmarks, it gives the best solution within the al-
located time and is the fastest to prove optimality. We be-
lieve our approach can be extended in many different ways
(e.g. multiclass, continuous features through binarization,
side constraints). More details can be found in the original
paper [Verhaeghe et al., 2019] and in the extended Constraint
Journal version (currently under review).
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