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Abstract
Constraint programming (CP) modeling languages, like MiniZinc, Essence and CPMpy, play a
crucial role in making CP technology accessible to non-experts. Both solver-independent modeling
frameworks and solvers themselves are complex pieces of software that can contain bugs, which
undermines their usefulness. Mutational fuzz testing is a way to test complex systems by stochastically
mutating input and verifying preserved properties of the mutated output. We investigate different
mutations and verification methods that can be used on the constraint specifications directly. This
includes methods proposed in the context of SMT problem specifications, as well as new methods
related to global constraints, optimization, and solution counting/preservation. Our results show
that such a fuzz testing approach improves the overall code coverage of a modeling system compared
to only unit testing, and is able to find bugs in the whole toolchain, from the modeling language
transformations themselves to the underlying solvers.
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1 Introduction

Constraint solving is a declarative AI reasoning technique that is used in a variety of high-
stakes applications ranging from scheduling production lines [19] to automated verification
of computer programs [21] and aerospace applications [34]. All of these applications require
constraint solvers to provide correct and reliable solutions to the constraint specifications.

To leverage the power of modern constraint solvers, it is common for users to write down
the problem specification in a high level, declarative constraint modeling language such as
MiniZinc [26], XCSP [33], Essence [2] or CPMpy [17]. These modeling languages play a
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fundamental role in enabling the wider adoption of CP technology across various domains as
they provide high-level, expressive, and intuitive methods for users to define complex problem
constraints. They offer an abstraction from the details of encoding high-level constraints
into the specific constraints supported by a solver, allowing users to focus on the problem at
hand rather than the specifics of the solvers.

Modeling systems then reformulate the high-level user-constraints into solver-specific
expressions such as clauses, linear constraints or unnested global constraints. For this,
the code base of modeling systems typically contains multiple reformulation and encoding
algorithms.

Modeling systems are also made more complex by optimizations such as Common
Subexpression Elimination (CSE) [27, 28, 30], used to reduce the number of generated low-
level constraints. In some cases, these transformations are mixed-and-matched in different
ways for different solvers.

Like all complex software, modeling systems and constraint solvers can contain bugs. In
the case of modeling systems, bugs can cause a range of undesired behavior: from experiencing
crashes of the system itself to returning an invalid or non-optimal solution to the constraints
stated by the user. Especially the latter can have a major impact on the user and the
application at hand. Moreover, it can also decrease the trust of users towards the underlying
solving techniques.

To mitigate the number of bugs in computer programs, it is good practice to use some
kind of automated testing during software development. Unit testing [13] is such a technique
to test isolated parts of the code using small test cases. While unit testing is very useful to
verify the intended behavior of a program, it is time-consuming for developers to write as it
necessitates testing for both expected and unexpected inputs. Therefore, tricky edge cases
may be overlooked when designing the test suite. In constraint solving, this is especially the
case for non-trivial combinations of constraints that share variables.

Fuzz testing is a family of techniques that automatically test computer programs on
randomly constructed inputs. These techniques can either be generation-based or mutation-
based: the former generates input from scratch, while the latter uses existing inputs and applies
mutations to them in order to construct a valid new input. Fuzz testing has proved to be
extremely successful in finding bugs in a variety of computer programs: from testing Android
apps [43], to crashes of Unix command-line utilities [25], and SMT solvers [23, 42]. Although
fuzz testing has been used to test several solver-specific algorithms such as propagation
routines [3, 10, 23, 29, 42], it has not yet been applied to solver-independent constraint
modeling languages, despite their rapid development in recent years.

In this paper, we draw inspiration from systems such as STORM [23] and YinYang [42]
tailored to test SMT solvers, and propose HURRICANE, a method to use mutational fuzz
testing for generic constraint modeling systems. The input that will be mutated in this case,
are entire CP constraint specifications.

New opportunities for fuzz testing arise, because of the rich constraint specification
that CP modeling languages allow. These include the use of global constraints and their
decompositions [38], the use of n-ary aggregate functions, the possibility of arbitrarily nested
expressions (even global constraints) that may require flattening, the use of objective functions,
and the changing transformation flows that are used for different available backend solvers.

Our contributions are the following:

1. We propose a generic, mutation-based, automated testing framework, HURRICANE, for
verifying the correctness of solver-independent CP modeling languages and their solvers;
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2. We investigate the use of 3 families of mutations; as well as 5 methods to verify the
mutated models do not contain bugs; and

3. We evaluate HURRICANE by mutating and testing CP problems modelled in the CPMpy
constraint modeling system [17], and show its effectiveness at finding bugs in the system
itself as well as its underlying solvers.

2 Related work

Automated testing of computer programs finds its roots in unit testing [13]. A unit test
consists of a small use case of a part of the software as envisioned by the developers. The
technique was made popular by the JUnit testing framework in Java [36].

In recent years, researchers have studied ways to automatically synthesize unit tests in
order to improve code coverage of the test suite [22]. Code coverage quantifies the number of
lines of code in a program that is executed by a (set of) tests. While this is not a foolproof
metric [40], it is a reasonable proxy to evaluate how thoroughly a system is tested.

Fuzz testing has been used in combinatorial solving before. An early form of testing
SAT-solvers uses generation-based techniques [11], and more recently, several solvers who
entered the 2022 edition of the Max-SAT competition were subjected to fuzz testing [29]. In
the field of CP, generation-based fuzz testing has already been adopted as an automatic testing
technique for solvers. For example, the propagation algorithms present in the MINION
solver have been automatically fuzz tested throughout its development [3]. The input used
for testing such propagation routines is a randomly generated set of constraints within the
relatively simple grammar supported by the solver. The output of the solver is verified
using simpler, but equivalent algorithms. A hybrid approach between fuzzing and formal
specifications for testing CP solvers has also been used by the SolverCheck system [14].

Compared to the API of a constraint solver, CP modeling languages allow for a much
richer set of expressions to be written down by a user (e.g., nested constraints). This
makes stochastic generation of inputs more complex [35], hence we turn our attention to
mutational fuzz testing techniques that mutate existing constraint specifications. The idea of
mutating constraint specifications has previously been explored for satisfiability checking
SMT solvers [23, 42, 9]. These techniques can generate deeply nested expressions in the
language that SMT solvers natively accept as input. While also applicable to high-level
constraint modeling languages, we propose new mutations and verification methods based on
the richer input CP modeling languages allow.

Finally, a very different kind of technique to detect bugs in combinatorial solvers is
through the use of proof logging. Proof logging requires a system to write down the result of
its algorithms as relatively simple mathematical reasoning steps. Such proofs are then verified
automatically by a third-party checker [15, 16, 18]. SAT solvers are required to output proof
logs (mathematical search certificates) in order to enter the yearly SAT competition1. In
recent years, proof logging has successfully found its way to other combinatorial search
algorithms such as those used in (Max-)SAT-, ASP-, SMT- and CP [4, 5, 8, 24, 31, 39].
However, proof logging for now remains a low-level technique that is not directly applicable
to algorithms that translate any high-level expressions into multiple equivalent low-level
solver constraints.

1 https://satcompetition.github.io/
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3 Preliminaries

A Constraint Satisfaction Problem (CSP) is a triple (X ,D, C) [32] with

X a set of decision variables;
D a set of domains of values for each variable in X ;
C a set of constraints, each over some subset of X .

An assignment maps variables in X to a value in their domain. A constraint maps
assignments to true or false. An assignment satisfies a constraint if the constraint maps it to
true. We make no assumption on the structure of a constraint, that is, it can be a nested
expression as we will see below. A solution to a CSP is an assignment for all variables in
X that satisfies all constraints in C. The set of solutions of a set of constraints, projected
to a set of variables X is written as solsX (C). E.g., given the following set of constraints
C = {p + q + z ≤ 2, p < q} and positive domains for p, q and z, we observe the following sets
of solutions:

sols(C) = {{p 7→ 0, q 7→ 1, z 7→ 0}, {p 7→ 0, q 7→ 1, z 7→ 1}, {p 7→ 0, q 7→ 2, z 7→ 0}}
sols{p,q}(C) = {{p 7→ 0, q 7→ 1}, {p 7→ 0, q 7→ 2}}

A CSP allowing no solutions is unsatisfiable. In CP it is common to use an objective
function to quantify the quality of a solution. A Constraint Optimization Problem (COP) is
a quadruple (X ,D, C, f) with f a function that maps assignments to a numeric value. An
optimal solution is a solution to the COP such that no solution exists with a lower/higher
objective value for minimization/maximization problems.

It is common to use the term constraint network for what we call a CSP. A CSP would
then be the problem of finding solutions to the constraint network. In this paper we will use
the term CSP for both. In the context of constraint modeling languages, a CSP could be
called a model, we use these terms interchangeably.

Global constraints are one of the essential features of constraint programming and capture
high-level relations between a (non-fixed) number of variables [38]. Well-known examples of
global constraints are the AllDifferent [37] constraint or the Cumulative [1] constraint.
More examples can be found in the global constraint catalog [6].

Typically, constraints and objectives are represented by expressions in some formal syntax.
E.g., the constraint ¬AllDifferent(x1, x2 + x3, Max(x4, 0)) maps those assignments to
true where x1, x2 + x3, and the maximum of x4 and zero do not all take different values.
Equivalently, constraints can be inductively defined as expression trees. Its leaf nodes are
variables or values. Its non-leaf nodes are formed by applying operators, global constraints,
functions, and comparisons to other expressions. The expression tree representing the
previously mentioned complex expression is shown in Figure 1a.

¬

AllDifferent
x1 +

x2 x3

Max
x4 0

(a) Expression tree

¬b1

b1 ↔ AllDifferent(x1, n1, n2)
n1 = x1 + x2

n2 = max(x4, 0)

(b) Flattened version

Figure 1 Expression tree and flattened version of ¬AllDifferent(x1, x2 + x3, Max(x4, 0))
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3.1 Solvers and modeling systems

CSPs are solved by constraint solvers: highly optimized combinatorial search systems that
accept a set of constraints and return (optimal) solutions or report that none exist. Constraint
solvers do not accept arbitrary expression trees as constraints. Instead, they have a restricted
input and rarely a solver would accept a complex expression like the one given in Figure 1a
as an input constraint.

Instead of having to manually transform a problem to the format of each solver, a model
and solve approach is used, where a user specifies the constraints in an expressive, high-level
modeling language. Then, an underlying compiler translates these constraints to simpler,
low-level constraints that are passed to a solver. The translation involves multiple complex
transformation steps, with flattening (unnesting of nested expressions) and global constraint
decomposition (decomposition of unsupported global constraint) as notable examples [30].
Because different solvers can accept different inputs, distinct transformation paths are
necessary for different solvers. When using MIP solvers, the constraints have to be linearised
into mixed integer linear inequalities [7], for SAT solvers only propositional clauses should
be left, or for CP solvers non-nested constraints over variables, where globals constraints
that are not supported are decomposed. Note that such transformations, like flattening, can
introduce auxiliary variables, that are not visible to the user but necessary for obtaining an
equivalent set of constraints that the solver accepts. When presenting a solution to the user,
the solution the solver found has to be projected back to the original variables that the user
knows about.

▶ Example 1 (Flattening). In Figure 1b, we show the flattened version of the expression
¬AllDifferent(x1, x2 + x3, Max(x4, 0)). The flat output is constructed by traversing the
expression tree in Figure 1a and introducing auxiliary variables n1, n2 and b1 for every non
leaf-node. n1 and n2 are numerical variables while b1 is Boolean. Additional transformations
might be needed, depending on the constraints supported by a solver.

3.2 CPMpy

As a concrete modeling system, we will use CPMpy [17], a constraint modeling library
embedded in the Python programming language. It translates high-level expressions written
by a user, to different constraint solvers using a sequence of generic transformations. A list
of these internal transformation can be found in Appendix B. Multiple solvers are supported,
including CP, SAT, MIP, SMT and Pseudo-Boolean solvers.

CPMpy’s input language allows arithmetic operations (+,−, /,× . . . ), comparisons (=
, ̸=, <, >,≤,≥), logical operations (¬,∧,∨,→,⊕), functions (Max, Count, Abs . . . ) and
global constraints (AllDifferent, Cumulative . . . ). Expressions in CPMpy are either
of Boolean or integer type. With B we denote the Boolean expressions, with N the integer
ones. Any Boolean expression in CPMpy can also be used as an integer expression (with
true treated as 1 and false as 0). In other words, B ⊆ N .

CPMpy allows users to arbitrarily nest expressions. For example, a disjunction can be
used as a constraint or as an argument to an operator, a function or even a global constraint.
Similarly, global constraints can be arbitrarily nested and used as any Boolean expression.
E.g., Max(10 · Circuit(x1, x2, x3), x1/x4) ̸= 7 is a valid CPMpy expression. Therefore,
we avoid the use of the word “constraint” to represent a Boolean expression, as such a
Boolean expression might be used as a subexpression instead. We use the concept of top-level
expression to denote that the expression was given to the solver as a constraint.

CP 2024
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4 Mutational testing

We now introduce HURRICANE, a framework for mutational fuzz testing of constraint
modeling systems, inspired by the STORM [23] and YinYang [42] systems for testing SMT-
solvers. A high-level overview is shown in Algorithm 1.

Algorithm 1 HURRICANE

Input: set of m CSP models {(Xj ,Dj , Cj)}, set of mutations M, a verification
method V and n, a number of mutations to apply to each instance

1 while true do
2 (X ,D, C)← pick an instance from the input set
3 for i = 1 . . . n do
4 M ← pick a mutation from M
5 C ← C ∪M(C)
6 if V(C) does not succeed then
7 yield bug with constraints C

Our method takes as input a set of m constraint satisfaction or optimization problems
that are known to be satisfiable. In each iteration of the algorithm, we randomly pick
one of the models and apply a number of mutations to its constraints. A mutation is a
function M that takes as input a set of constraints and outputs a set of new constraints
M(C). We investigate different mutations in Section 5. These newly generated constraints are
then added to the model. Notice this allows to generate weaker constraints without altering
the set of solutions of the model. After applying these mutations, we verify whether the
resulting set of constraints satisfies certain properties, e.g., whether the mutated model is
still satisfiable. Whenever this check fails, the algorithm has found a bug in the system and
this is logged to the user. Section 6 discusses the methods that can be used in order to verify
the mutated models. When a verification step fails, we know there is a bug somewhere in
the system. However, because the system consists of different components (internal CPMpy
transformations, solver interfaces, backend solvers, the mutations and the verification step),
further investigation will be required to identify which part contains the bug.

As our algorithm involves several random components, it is common to (re-)discover the
same error or bug with multiple combinations of mutations. In an attempt to minimize this
to some extent, we exclude any mutation-model combinations which have already produced
a bug, without showing this explicitly in the pseudocode.

Input models

To construct a varied dataset of feasible input models, we extract the constraint models
used for the unit tests of the given modeling language. We only use those that have at
least one constraint, and at least one solution, since our verification step will rely on this.
From a practical point of view, this is useful as unit test models are readily available and
kept up-to-date. Many of models used in unit tests also tend to be small and fast to solve.
Moreover, unit tests are highly diverse and it is reasonable to assume these models will
contain all language constructs (such as global constraints and functions). Finally, additional
test cases are often added to the unit tests as part of a bug-fix, hence a fix is tested more
rigorously by applying fuzz testing on the newly added test-model too.

Throughout this paper we use the following input model as a running example.



W. Vanroose, I. Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe, and T. Guns 23:7

▶ Example 2 (Running example). Consider the following constraint satisfaction problem with
integer variables x, y, z, p and q with domains [1..5] and a Boolean variable b.

AllDifferent(x, y, z), y + Min(p, q) > 3, 2 · (x + p) ≤ 7

5 Mutations

We consider three families of mutations. The first of which is based on the reformulation
methods built into constraint modeling systems such as flattening, or linearization of con-
straints. Second, we focus on top-level mutations which combine existing top-level expressions
to create a new expression, and lastly, we consider sub-expression-level mutations which can
replace nodes at arbitrary depth in the expression tree. All of these mutations generate
constraints which do not disallow any of the solutions of the original constraints. Because
we also leave the original constraints in the mutated model (see Algorithm 1), this means
the set of solutions projected to the original variables should remain unchanged after any
mutation. This property of our mutations is exploited in Section 6 to verify the output of
the modeling system after mutating the constraint model.

5.1 Reformulation mutations
Constraint modeling systems implement reformulation methods in order to rewrite constraints
into semantically equivalent ones. For example, when a modeling system interfaces a MIP
solver, it implements some procedure to linearize constraints. That is, to rewrite any
constraint into weighted sums and linear comparisons. Similary, CP modeling systems
decompose unsupported global constraints or flatten complex expression trees.

CPMpy provides this functionality as standalone transformation functions which take
as input a set of constraints and output a set of (simpler) constraints that imply the input
constraints2. As these transformations are supposed to create sets of constraints that leave
the solutions of the CSP unaltered, we can directly use each of them as a candidate mutation
in the mutational testing framework. By re-using these transformation functions, we are
able to test these core components of the modeling language on a wide range of expressions,
even if the backend solver does not require that specific transformation. The full list of the
transformation functions used and their description can be found in Appendix B.

5.2 Top-level mutations
The first set of mutations we use in our framework is based on logical operations with the
main idea being the following: given two Boolean expressions from the top-level of the
constraint model, combine them to create an implied expression. As both input expressions
will be enforced to be satisfied by the constraint solver, the newly generated expressions do
not alter the set of solutions when added to the model and can be considered redundant from
a logical point of view.

We compile a set of top-level mutations as summarized in Section 5.2. They are inspired
by the mutations described in [23] and derived from the truth table of the logical operation
relation whose name is shown as subscript in the function descriptions below. We repeat
that these operations are only done on top-level constraints, so they are all implied under

2 https://github.com/CPMpy/cpmpy/tree/master/cpmpy/transformations
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the condition of a∧ b being enforced. Hence, all these constraints can be added to the model
without changing the set of solutions.

Mneg(a) = {a,¬(¬a)} (1a)
Mconj(a, b) = {(a ∧ b),¬(a ∧ ¬b),¬(¬a ∧ b),¬(¬a ∧ ¬b)} (1b)
Mdisj(a, b) = {(a ∨ b), (a ∨ ¬b), (¬a ∨ b),¬(¬a ∨ ¬b)} (1c)

Mimpl(a, b) = {(a→ b), (¬a→ b), (b→ a), (¬b→ a),
¬(a→ ¬b), (¬a→ ¬b),¬(b→ ¬a), (¬b→ ¬a)} (1d)

Mxor(a, b) = {(a⊕ ¬b), (¬a⊕ b),¬(a⊕ b),¬(¬a⊕ ¬b)} (1e)

Note that we add all these constraints as is, e.g. we do not simplify ¬(a∧¬b) to (¬a∨ b) but
leave this expression for future mutations to manipulate further, and for the transformations
and solvers to handle correctly.

Our proposed mutation will randomly pick one of the above mutations and add the
corresponding sets of implied constraints to the model.

▶ Example 3. Given the constraint model shown in Example 2. Imagine HURRICANE
selects the constraints a := AllDifferent(x, y, z) and b := Min(p, q) > 3 and the top-level
mutation derived from the disjunction operator, Mdisj . Then the following set of constraints
is generated and added to the model, resulting in a CSP with seven constraints.

{(AllDiff(x, y, z)) ∨ (2 · (x + p) ≤ 7), ¬
(
¬AllDiff(x, y, z) ∨ ¬(2 · (x + p) ≤ 7)

)
,

(¬AllDiff(x, y, z)) ∨ (2 · (x + p) ≤ 7), (AllDiff(x, y, z)) ∨ ¬(2 · (x + p) ≤ 7)}

5.3 Subexpression mutations
The mutations described in the previous section operate on top-level Boolean expressions.
However, we can also modify the expression trees themselves by replacing any of the nodes
(e.g. an argument of an expression) with an equivalent one. Such modified expression trees
may trigger different code paths, for example during flattening if the modified argument was
a variable and is now a nested expression instead.

In order to find a set of subexpressions to use for the mutation, we first recursively traverse
the expression tree of each of the top-level constraints. Whenever we find a (sub)expression
of the required type - e.g., a numeric subexpression/argument - we add that subexpression
to the set of candidates to sample from. Once this set of candidate expressions is found, we
sample the required amount of expressions to use in the mutation. In the remainder of this
section we discuss two types of subexpression mutations.

Semantic fusion

As a way to combine numeric sub-expressions, semantic fusion was introduced in the context
of testing SMT-solvers [42]. The key idea is to fuse two expressions and create an auxiliary
variable for it, and then replace the original expressions with an equivalent one involving
that variable.

In general, semantic fusion requires a fusion function f(a, b) which takes as input two
numeric expressions; an auxiliary variable v and two inversion functions ra(v, b) and rb(v, a).
We can then mutate constraints in which a and b occur, by replacing the occurrences of a

and b by their now equivalent ra(v, b) and rb(v, a) expressions.
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▶ Example 4. We sample two numeric subexpressions from the CSP given in Example 2. For
example, we take a := Min(p, q) and b := 2 · (x + p), which are sampled from the second and
third constraint in the CSP respectively. Using the fusion function f(a, b) = a + b, we now
define a new auxiliary variable v to link the new fused expression as v = Min(p, q)+2 · (x+p).
We can now define a relation from a to b and vice versa involving the auxiliary variable. E.g.,
we replace Min(p, q) with v− 2 · (x + p) and the occurrences of 2 · (x + p) with v−Min(p, q).

This yields the two constraints y + (v − 2 · (x + p)) > 3 and v −Min(p, q) ≤ 7 which are
then added to the model.

Multiple operations can be used for the fusion function, even Boolean operators (in which
case boolean sub-expressions should be selected), though an appropriate inverse function must
exist. For example f(a, b) = a ∨ b and f(a, b) = a ∧ b do not allow constructing appropriate
inversion functions. In practice, we make use of the fusion functions shown in Table 1.

Origin Fusion Function Inverse Functions

Sum f(a, b) = a + b
ra(v, b) = v − b

rb(v, a) = v − a

Weigthed sum f(a, b) = c1 · a + c2 · b + c3
ra(v, b) = (v − c2 · b − c3)/c1

rb(v, a) = (v − c1 · a − c3)/c2

Substract f(a, b) = a − b
ra(v, b) = v + b

rb(v, a) = a − v

Table 1 Functions which can be used in semantic fusion of arithmetic expressions

Equivalent comparisons

The second type of subexpression mutators generates equivalent comparisons. This is done
by selecting a random comparison in the expression tree of the constraint model and applying
the same operation to both its sides. These operations can either add a constant, subtract
a constant or apply multiplication by a constant. The constant itself is picked at random.
Although this mutation is based on a straightforward idea, we did not find any mention of it
in literature.

▶ Example 5. Imagine the algorithm picks the second constraint of the running Example 2:
y + Min(p, q) > 3 and the multiply by a constant mutator. If the constant used is “5”, then
applying the mutation results in the expression 5 · (y + Min(p, q)) > 5 · 3.

Depending on the exact grammar allowed by the modeling language, the same could in
principle be done with a fresh variable or even an existing numeric subexpression from
another constraint, but in this case we just use an integer constant.

6 Verification methods

To detect whether a bug has occurred, we need to verify that certain properties hold for
the mutated constraints. In fuzz testing for SMT research [9, 23, 42], the authors check
if, after mutations, the model still admits a solution. However, more elaborate checks are
possible as well. In particular, as the mutations presented in Section 5 should not alter the
set of solutions projected to the original variables. The verification methods presented in
the following sections are all methods which check whether indeed this set of solutions is
preserved. Different trade-offs between efficiency, code coverage, and thoroughness of the
verification present themselves. We compare and evaluate them experimentally in Section 9.

CP 2024
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6.1 All-solutions
A first method to check whether the set of solutions is unchanged is to enumerate the solutions
of the original model and those of the mutated model and checking for equivalence of solution
sets. Some of the mutations presented in Section 5 can introduce auxiliary variables. E.g.,
semantic fusion introduces a fusion variable but also the built-in reformulations such as
flattening can introduce new variables into the model. Therefore, in order to compare both
sets of solutions, we need to project them to the original set of decision variables X . I.e.,
this verification method checks whether the following equivalence holds:

solsX (C) ≡ solsX (C ∪M(C))

Note that enumeration of all solutions is a costly operation - #P-complete in general [12]
- but solvers oftentimes have built-in methods for doing so. CPMpy implements enumeration
of all solutions using the solveAll function. This in turn calls the built-in enumeration
method of the solver if available, otherwise it implements the enumeration using repeated
solve calls and blocking clauses. Clearly, using this verification method does not only allow
for a theoretically strong verification of the mutations, but can also trigger different code
paths in either the modeling system or the solver itself.

6.2 Solution count
Apart from checking whether projected sets of solutions are equivalent, we also want to
check whether new solutions are introduced by the mutations, with respect to auxiliary
variables. E.g., if a mutation introduces an unconstrained Boolean auxiliary variable, the
total number of solutions will be doubled. While this behaviour is unwanted for any of
the mutations presented in this paper, it is undetected by the All-solutions verification
method as the sets of solutions are projected to the original variables. This is however not
the case when counting the number of solutions without enumerating them, because this
count is provided by the back-end solver that operates on the model with auxiliary variables.
Therefore, we propose to also check whether the total number of solutions of the mutated
model is unchanged to the original number of solutions. I.e., we check whether whether

|sols(C)| ≡ |sols(C ∪M(C))|

Similar to enumeration of all solutions, counting solutions is also a costly operation, but
may trigger new code paths in modeling systems or solvers. Note that solution counting and
checking equivalence of projected solutions sets are complementary to one another. While
solution counting discovers bugs related to auxiliary variables, All-solutions can discover
bugs related to assigned values of the decision variables.

6.3 1-solution
Instead of checking whether all solutions remain for the mutated constraints, we can check
whether a predefined solution is preserved by the mutations. Conceptually, we check for a
given solution θ whether

θ ∈ sols(C ∪M(C))

In practice, we implement this by adding the assignment of a pre-computed solution to
the set of mutated constraints and asking the solver if the resulting constraints are satisfiable.
E.g., for the CSP from Example 2, we can test if after mutation of the constraints, the
assignment {b 7→ false, x 7→ 2, y 7→ 3, z 7→ 1, p 7→ 2, q 7→ 1} is still a solution of the CSP.
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Notice that checking satisfiability can be extremely fast here, as the solver does not
require any search when all variables are fixed! Naturally, finding a solution for the original
CSP requires invoking a solver nevertheless.

6.4 Satisfiability

A weaker verification method than checking whether a computed assignment is a solution of
the mutated model, is to check whether the mutated model admits a solution at all. This
verification method is similar to the work on fuzz testing SMT-solvers [9, 23, 42]. Naturally,
this check does not detect subtle changes in the set of solutions of the mutated model, but
rather checks if the sets of solutions is non-empty.

6.5 Optimization

In constraint programming, it is common to use an objective function in order to quantify
the quality of a solution. E.g., when scheduling a set of tasks on a machine, it is common to
find a schedule which runs in the least amount of time or requires the smallest amount of
energy. When such an objective function is set in a constraint model, we can check whether
solving the mutated model to optimality yields the same objective value.

This verification is conceptually stronger compared to checking the satisfiability of the
model, and solving to optimality will trigger different code paths. There are two disadvantages:
First, it requires the existence of an objective function in the model and second, finding an
optimal solution to a CSP is harder than finding any satisfying solution to the constraints, and
hence will take more time compared to checking the satisfiability of the mutated constraints.

7 Dealing with bugs

Computer programs can exhibit several types of bugs. Similar to the authors of [23], we
define three classes of bugs that occur in constraint modeling systems. Section 7.1 discusses
errors in the logic of modeling systems and solvers, while Section 7.2 and Section 7.3 focus
on bugs which impact the runtime environment of modeling systems. Lastly, in Section 7.4,
we discuss a practical method to minimise bugged models.

7.1 Soundness bugs

The first type of bug are those where the modeling system returns a wrong answer to a
verification check from Section 6. Such bugs are critical as the user is given a wrong answer
to the constraints, without any indication that something went wrong, like an error message.
E.g., the solver returns a non-optimal solution to an optimization problem or declares a set
of constraints to be unsatisfiable when in fact they admit a solution.

Soundness bugs can be caused by either the solver itself, or by the modeling system. For
example, when a solver’s propagation function for a (global) constraint removes values from
a domain which allowed a solution, the root-cause of the bug lies with the solver.

When the bug is caused by the modeling system this could be due to a flawed interface
to the solver or an improper reformulation of the constraints.

Overall, soundness bugs are critical but difficult to detect in day-to-day use of a modeling
language, as this usage rarely includes verifying the result in a later stage.
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7.2 Crashes
During the execution of HURRICANE, it is possible the runtime of the modeling system
crashes. We identify two main points of possible failure: applying a mutation and verifying
the mutated model.

We noticed crashes or errors occurring during the mutation of set of constraints are often
triggered when a reformulation mutation is chosen. For example, during linearization of a set
of constraints, an assertion error was thrown because certain edge cases were not covered.

When a crash occurs during verification of the set of mutated constraints, this can
be caused by either the backend solver or the modeling system. For example, during the
development of our tool, a crash in a solver was caused by an integer overflow error - causing
the solver to return an error message. An example when CPMpy was identified to be the
cause of a crash happened when one of the interfaces to a solver did not implement all
primitive constraints properly.

Most crashes are easy to detect in the day-to-day use of modeling systems as a user
always receives an error message. Still, the severity of a crash can vary widely as it mostly
depends on how the system is used. E.g., when the modeling system crashes when used in
an integrated system of a manufacturing plant, the crash has likely far greater implications
compared to when it is used in an interactive session.

7.3 Performance issues
The last type of bugs we identified are related to the performance and efficiency of the library.
For example, when we verify whether the mutated model satisfies at least one solution,
the time it takes for the modeling system to receive an answer from the solver may be
significantly higher compared to the original model. This can again have several reasons
caused by either the modeling system or the solver. For example, the mutated model may
contain global constraints which get decomposed in a particularly inefficient way when nested
by HURRICANE. Sometimes, either the solver or modeling system may even get stuck in an
infinite loop! In practice we overcome this by setting a hard time-limit on the call to the
verification method. Naturally, this may trigger false-positives as the mutated model may
simply be harder to solve due to the surplus in variables and constraints. Still, we log these
bugs as it may uncover interesting inefficiencies in the code.

7.4 Minimizing buggy models
The mutations defined in this paper can result in very large and deeply nested constraint
models. However, often only a (small) subset of the constraints are the root cause of the
bug. In our work, we utilize a simple deletion-based method that iteratively removes a single
constraint from the model as long as the remaining model exhibits the bug. This method
is similar to delta-debugging and is often used in combination with fuzz testing [44]. It
should be noted that a crash of the system often gives some sort of message pointing to
the expressions that caused the crash. Therefore, we deem delta debugging to be especially
useful when dealing with a soundness bug.

Another way to simplify the debugging process is by automatically detecting bugs that
are already identified. HURRICANE will keep logging a bug until it is fixed, so the same bug
will be logged many times over. A first way to find out which of the bugged models are cause
by Bug X, is to fix Bug X and then simply check which buggy models do no longer exhibit a
bug. It’s of course not always possible to quickly fix a bug, even after it is identified. We
then turn to matching the error messages and location of the error in the code, as well as
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the input model or transformation that lead to the bug. For soundness bugs we can compare
the results of multiple solvers to see if they match. This is enough information to confidently
categorise most bugs in a semi-automated process.

8 Summary of found bugs

We coded up HURRICANE in Python 3.11 for CPMpy using the mutations and verification
methods described previously. During development, which covers a period of about 1.5 years,
we discovered 52 unique bugs in total. This includes 19 bugs found in CPMpy during
a master thesis that preceded this work [20]. Out of all bugs discovered, 13 bugs where
soundness bugs, 5 of which had their origin in backend solvers. In particular, we found 2
soundness bugs in the OR-tools solver and three in the MiniZinc system. The vast majority
of bugs (29) were crashes of the CPMpy runtime environment. One of these crashes was
traced back to a backend solver crashing. Lastly, we found three performance issues, one of
which was again found in a backend solver.

Out of these 52 bugs, 14 remained at the time of the experiments described in the next
section: 6 bugs in backend solvers and 8 in CPMpy. We shortly discuss these bugs in
Appendix A. Full experimental data is also shown there.

9 Experimental evaluation

In this section, we investigate each of the components of our fuzz testing framework. In
particular, we aim to answer the following experimental questions:

EQ1. What are the tradeoffs between increasing the number of mutations on each model
and increasing the number of models being tested?

EQ2. How effective are the different verification methods for finding bugs in constraint
modeling systems?

EQ3. To what extend does fuzz testing improve the overall coverage of tested code, compared
to CPMpy’s builtin suite of unit tests?

We configure HURRICANE to use different numbers of mutations and different types of
verification methods. We test each of the five verification methods described in Sections 6.4 -
6.5 separately. For each of the verification methods, we employ four numbers of mutations
applied to the input model before verification: n = {1, 2, 5, 10}. As backend solvers, we test
the OR-Tools CP-SAT solver v.9.9 and MiniZinc v.2.8.3 with Gecode version 6.3.0. This
combination of settings results in a total of 40 configurations, each of which was ran for 10
hours on an Ubuntu 20.04.6 LTS machine with an Intel Core i7-2600 CPU@3.40Ghz and
16GB of RAM. During these experiments, we keep track of which lines in CPMpy’s code-base
are executed using the coverage utility in Python.

We used 1240 constraint models as input, 7 of which are optimization problems. As
discussed in Section 4, the models were extracted from the unit tests of CPMpy3. In the
following sections, we aggregate the results of the above evaluation in order to answer the
experimental questions.

3 all code and input data can be found at https://github.com/CPMpy/fuzz-test
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9.1 EQ1: effect of number of mutations
In this first experiment, we investigate the influence of the number of mutations (n) used
in Algorithm 1 before verifying the mutated models. The more mutations used, the more
diverse the output can be, and the more likely it is for a bug to be found. This can clearly
be seen from the #unique column in Table 2 where we notice a steady increase in number of
unique bugs found, with respect to the number of applied mutations. Notice this number
of unique bugs is not in direct correlation with the number of errors reported. E.g., when
testing OR-Tools and using two mutations before verification, many errors with the same
root-cause (bug) are found by HURRICANE.

Mutations can increase the size of a model hyper-linearly: when applying a transformation
such as flattening or decomposing global constraints, a single constraint can easily become a
large set of constraints. Hence, it is likely the subsequent mutations will be slower as they
have to run on bigger input, as does the verification check. From the #models column in
Table 2, we can indeed conclude more mutations will result in less models tested for the
given time-frame of ten hours.

The optimal value for n will of course depend on the time HURRICANE is ran for, since
for smaller n we can find bugs more quickly, but for big n we expect to find those bugs
eventually. We therefore propose that the best way of using HURRICANE would be to
increase n over time, causing the easily detected bugs to get found quickly while making it
possible to find the more obscure bugs later on.

Table 2 Number of mutations for each iteration compared to the number of bugs found and
number of models handled. (Aggregated over the different verification methods)

OR-Tools MiniZinc Total
#mutations #models #errors #unique #models #errors #unique #unique

1 9166418 5747 1 218377 289 3 3
2 6672588 11002 3 216527 723 6 6
5 2270441 8975 5 128884 1495 8 11
10 344710 2783 7 57191 423 9 13

9.2 EQ2: effect of verification methods
The next dimension of our algorithm we investigate is the different types of verification
methods. We aggregate the results for this experiment for all number of mutations. I.e., the
results as reported in Table 3 result from testing the algorithm with all settings of n.

First of all, we notice a big difference in the amount of models that the different methods
can verify. The results for the optimization verification method should be interpreted
cautiously, because they run on a smaller subset of input models that have an objective
function. These models happen to be small, explaining why the optimization verification
solves more models than we would expect it to. More interesting is the difference in the number
of models checked for the satisfiability and 1-solution verifications compared to counting
and equivalence. This however does not translate to a large advantage in discovered bugs,
indicating the usefulness of the computationally more expensive counting and equivalence
verifications.

The 1-Solution verification performs best, regarding the number of unique bugs. This
can be understood because it is a stronger check than the satisfiability check, but seems
even faster. This is due to the fact that we send the instantiated solution to the solver when
verifying the mutated model, leading to faster propagation.
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Interestingly we observe that the solution counting, 1-solution and optimization methods
all found at least 1 bug that was not detected by any of the other methods. This was not
the case for All-solutions or satisfiability checking, and we could consider those redundant in
the context of our experiments. Although verifying All-solutions is theoretically a stronger
check than solution counting, and they can test models at a similar speed, both methods
found bugs that the other did not. For example in an earlier experiment a bug was found in
the solveAll routine of CPMpy, only detected using solution count. This highlights the
advantage of using different verification methods to cover all aspects of the toolchain.

Table 3 Number of verification steps and errors found for different verification methods in 40
hours. (Aggregated over the different values of n)

OR-Tools MiniZinc Total
verification #models #errors #unique #models #errors #unique #unique

All sol 13441 460 4 11167 312 7 8
Counting 14551 539 5 11623 325 6 8
One sol 4095185 25695 5 194495 1983 8 10

Sat 3679400 180 4 186119 116 5 8
Opt 10651580 1633 2 217575 194 3 4

9.3 EQ3: effect on code coverage
As mentioned in Section 2, code coverage is a common proxy to measure the efficacy of
a test suite. In this experiment, we compare the code coverage of running all unit test
models (unit-models), running HURRICANE for 400 hours with these unit test models
(200 hours for each backend solver) (HURRICANE), running all unit tests (not just the
models that appear in them) (unit-tests), and the combined code coverage (combined) of
HURRICANE and unit-tests.

The results are presented in Table 4. The data in this table is shown for the different
solvers, with each sub-row representing a part of the code base. expressions contains the
construction and evaluation code for all expressions (operators, functions, global constraints,
etc.), transformations the internal transformation routines, and ortools.py and minizinc.py
contain the solver-specific interfacing code

The results show that HURRICANE improves code coverage over just solving the unit
models, but not over running all unit tests. Still, HURRICANE does cover new parts of
the code, as the combined coverage is higher than just unit tests on its own. Because
HURRICANE uses the internal transformations as mutations, we see a high code coverage
on transformations too, even when using a solver like MiniZinc that requires only a few of
the transformations in CPMpy.

Table 4 Segmented code coverage for different components of CPMpy

Solver files unit-models HURRICANE unit-tests combined

OR-Tools
expressions 54.6% 64.6% 87.3% 88.6%

transformations 59.3% 83.6% 86.4% 88.2%
ortools.py 64.1% 81.5% 90.4% 91.5%

MiniZinc
expressions 51.1% 64.0% 87.3% 88.6%

transformations 22.1% 82.6% 86.4% 88.2%
minizinc.py 70.6% 84.3% 83.0% 89.2%
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10 Discussion and future work

We presented a method to automatically test constraint modeling languages given a set
of input CSPs and COPs. We show that a sufficiently diverse set of input models can be
obtained from the unit tests of the modeling language. Based on recent work in SMT-testing,
we proposed a set of mutations to use over these models, in order to generate new and more
complex inputs to CP modeling languages.

As shown in Section 9, our method is able to find a significant number of bugs for the
CPMpy framework and its solvers, ranging from crashes to soundness bugs and finding
downstream bugs in MiniZinc and OR-Tools. Moreover, using our framework improves
the code coverage compared to the unit testing implemented in the library. Our proposed
fuzz testing techniques also neatly allows continuous integration with modeling language
development: when new features and bug fixes are added to a modeling language, the fuzz
testing framework can just continue with the latest version on some remote server, testing
the codebase 24/7.

While our methods are highly effective in finding bugs, one of the major difficulties
remains how to avoid re-finding similar bugs, and producing minimal bug instances. We
leave this topic for future investigation. Compared to testing SMT-solvers, CP offers several
interesting dimensions on which we only briefly touched in this paper. These features include
optimization, which can be tested more thoroughly in the future by also mutating objective
functions. Another key feature of CP is the notion of global constraints. Based on [9], we
would like to include mutations which can introduce new global constraints into the models
as currently we rely on the global constraints already being present in the input.

Recent work in SMT-solving showcases the power of using voting between multiple solvers
to verify the answer any of the solvers produce [41]. Crucially, solver voting allows to use
mutations where the result of the solver does not have to be known upfront, i.e., one does
not have to know what properties the mutations have. Using multiple solvers perfectly suits
the testing of constraint modeling languages, as their core function is to translate constraint
specifications to multiple solvers and solving paradigms. We are optimistic that this work
will remain useful in the future, by applying it to more solvers, adding more mutations, and
encouraging more developers to make use of it.
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A Overview of bugs found during experimental evaluation

We identify 2 OR-Tools bugs, 4 MiniZinc bugs and 8 CPMpy bugs, and give a short description
in this section.

Bug 1

Some mutated models are declared unsatisfiable when solving them using Gecode through
its MiniZinc interface. Solving with another solver confirms that the models are in fact
satisfiable. This is a critical soundness bug.4

Bug 2 & 3

The next 2 bugs are also considered soundness bugs in MiniZinc but are not as severe as
the first one. There are some models where MiniZinc does not output a value for all the
variables after solving. This happens for most but not all of the available solvers within
MiniZinc. The reason we count 2 different bugs is that a third similar bug has already been
solved after HURRICANE found it earlier on, but this didn’t resolve the ones we found here.
Further distinction lies in the fact that Bug 2 occurs when solving to satisfiability and Bug 3
happens when solving to optimality.5

Bug 4

When using MiniZinc Python some models do not respect the given time limit when solving.
This is due to the compiler optimisation phase getting stuck.6

Bug 5

A bug in CPMpy’s MiniZinc interface, that causes a crash when a nested sum appears in the
arguments of the global constraint: AllDifferentExcept0.7

Bug 6

A bug in CPMpy’s MiniZinc interface, that causes a crash when the Count global constraint
appears as an argument in a weighted sum.8

Bug 7

The helper function canonical_comparison contained a bug where weighted sums were
incorrectly transformed. This is a soundness bug.

Bug 8

Inconsistent implementation of the relational semantics for constraint modeling languages
meant that handling of partial functions such as Element leads to missing solutions where
the constraint is undefined, but occurs in a nested context.

4 https://github.com/MiniZinc/MiniZincIDE/issues/199
5 https://github.com/MiniZinc/libminizinc/issues/803
6 https://github.com/MiniZinc/libminizinc/issues/805
7 https://github.com/CPMpy/cpmpy/issues/460
8 https://github.com/CPMpy/cpmpy/issues/461
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Bug 9

CPMpy’s helper function is_bool did not recognise a specific datatype to be Boolean.9

Bug 10

The internal transformation canonical_comparison can create weighted sums with zero
arguments, leading to a crash later in the transformation pipeline.

Bug 11

An assertion error gets triggered in the internal function canonical_comparison, when a
CPMpy sum operator is encountered that only contains integers and no variables.

Bug 12

An equation between an integer and a Boolean expression was treated as reification by the
flatten transformation of CPMpy.10

Bug 13

Crash in the OR-Tools solver causing the Python runtime environment to crash.11

Bug 14

A soundness bug in OR-Tools’ presolve where the ordering of constraints influences whether
a model was declared to be satisfiable or not. 12

A.1 Occurrences of each bug
In Table 5 and Table 6, we show the unaggregated data of how many times each bug was
found by HURRICANE during our experimental evaluation.

9 https://github.com/CPMpy/cpmpy/issues/452
10 https://github.com/CPMpy/cpmpy/issues/442
11 https://github.com/google/or-tools/issues/4169
12 https://github.com/google/or-tools/issues/4168
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Table 5 Bugs found by different verification methods when running with MiniZinc

Verif #mut B1 B2 B3 B4 B5 B6 B7 B8 B9 #bugs #models

All sol

1 - - - - 1 - - 23 - 24 3492
2 - - - - 2 - - 59 - 61 3594
5 2 - - - 5 1 36 86 13 143 3242
10 - - - 1 1 - 38 28 16 84 839

counting

1 - - - - 1 - - 24 - 25 3633
2 - - - - - - - 61 - 61 3655
5 2 - - - 3 1 40 94 15 155 3496
10 1 - - - 1 - 39 28 15 84 839

One sol

1 - - 66 - 15 - - 133 - 214 65029
2 - - 68 - 29 4 1 429 2 533 64725
5 2 - 91 - 108 8 12 903 32 1156 61554
10 - - 6 1 7 - 3 60 3 80 3187

sat

1 - - - - 26 - - - - 26 88981
2 - - - - 61 6 - - 1 68 87419
5 1 - - 1 6 1 - - 2 11 6554
10 1 - - - 6 1 - - 3 11 3165

opt

1 - - - - - - - - - - 57242
2 - - - - - - - - - - 57134
5 2 - - - - - 28 - - 30 54038
10 2 7 - - - - 155 - - 164 49161

Table 6 Bugs found by different verification methods when running with OR-Tools

Verif #mut B7 B8 B9 B10 B11 B12 B13 B14 #bugs #models

All sol

1 - 26 - - - - - - 26 4102
2 - 64 - - - - - - 64 3786
5 37 95 13 - - - - - 145 3332
10 116 70 38 - - - - 1 225 2221

Counting

1 - 26 - - - - - - 26 4152
2 - 69 - - - - - - 69 4128
5 42 117 16 - - - 1 1 177 3718
10 139 78 43 - - - - 7 267 2553

One sol

1 - 5695 - - - - - - 5695 2226130
2 6 10761 79 - - - - - 10846 1400180
5 84 7449 212 1 - - - - 7746 412874
10 71 1250 80 1 6 - - - 1408 56001

Sat

1 - - - - - - - - - 1958248
2 4 - 19 - - - - - 23 1292747
5 40 - 55 1 - - - - 96 379361
10 28 - 29 1 3 - - - 61 49044

Opt

1 - - - - - - - - - 4973786
2 - - - - - - - - - 3971747
5 811 - - - - - - - 811 1471156
10 820 - - - - 2 - - 822 234891

B Reformulations as mutations

We summarize the constraint reformulations implemented in CPMpy which are used in our
mutational testing framework.
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Unnesting and normalization of lists

This transformation is the first in the transformation pipeline of any solver implemented in
CPMpy and all subsequent transformation expect as input a flat list of constraints. This
Additionally any conjunction at the top-level of the constraint model will be split up into
separate constraints

Munnest([c1, [c2, c3], [c4 ∧ c5]])

with cn, n ∈ 1..5 being arbitrary constraints, results in

[c1, c2, c3, c4, c5]

Flattening

Makes sure no nested constraints remain in the expression tree. This reformulation introduces
a fresh variable to be equated with a (numerical) expression and un-nests each constraint
accordingly. The output of this reformulation is a set of Boolean expressions within a
restricted grammar defined by CPMpy’s developers. For example, given the expression list

[AllDifferent(Min(w, x), y, z)] (2)

the result of the flattening is

[AllDifferent(e, y, z), e = Min(w, x)] (3)

with e an auxiliary variable with the right bounds.

Decomposing global constraints

This function is one of the elementary operations in constraint modeling languages. While
many CP-solvers support a variety of global constraints, these advanced relations between
variables are oftentimes not supported by solvers from other solving paradigms. Hence,
when a model containing a global constraint has to be solved by for example an SMT-solver,
it needs to be decomposed into simpler expressions first. This reformulation does exactly
that. For example, if AllDifferent is not supported by the solver, it is decomposed to a
conjunction of pairwise disequality constraints.

Unnesting of reified constraints

This transformation is applied to ensure no unsupported expressions remain reified. For some
of the backend solvers in the CPMpy library, reification is only supported on a subset of
expressions. This reformulation is applied after flattening, and ensures further unnesting such
that only reifications of supported constraints remain. For example, given the unsupported
expression b →Max(x, y, z) ≤ 10, a valid transformation in order to remove the reification
of the Max is

(b → a ≤ 10) ∧ (Max(x, y, z) = a) (4)

with a an auxiliary variable with the appropriate bounds. Input constraints must not contain
unsupported global constraints, and must be flattened first.
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Only half-reification

It removes all “full reification constraints” from the expression tree and ensures all reifications
end up in the form b → bexpr . This transformation always has to be preceded by the previous
only boolean variables reify transformation. For each constraint of the type b ↔ bexpr , two
half-reification constraints are introduced: b → bexpr and ¬b → ¬bexpr . This transformation
also simplifies the negated Boolean expression whenever possible. For example, given b↔ x∧y

as input, the transformation returns {b→ x ∧ y and ¬b→ (¬x ∨ ¬y)}.

Normalization of reifications

This transformation rewrites any reification such that the Boolean variable occurs on the
left hand side. E.g., constraints of the type bexpr → b are rewritten to ¬b → ¬bexpr ,
full-reification constraints bexpr ↔ b are swapped to b ↔ bexpr . Similar to the previous
transformation, negated Boolean expressions are simplified when possible. Input constraints
must be flat.

Linearize

It ensures any flattened constraint is transformed into a canonicalized linear constraint, i.e.,
a comparison with a weighted sum of integer or Boolean variables on the left-hand side and
a constant on the right-hand side. The ouput is thus always of the form∑

wixi ⟨cmp⟩ c

where ⟨cmp⟩ is the one of the comparison operator allowed (=,≤ or ≥), the wi are the
integer weights and xi the Boolean/integer variables. Before linearizing, unsupported global
constraints must be decomposed, and must contain only boolean implications.

Normalized numerical expressions

This transformation is targeted to be used with solvers that don’t support comparisons (<,
≤, ≥, >, ̸=) between an expression and a constant. An auxiliary variable is thus required to
transform it into a simple comparison. For example, if Max(x, y, z) ≤ 10 is not supported,
it will be transformed into

(Max(x, y, z) = e) ∧ (e ≤ 10) (5)

by using the auxiliary variable e (with appropriate bounds). Input constraints must be flat.

Converting negated Boolean variables

After linearization of a set of constraints, it helps make the constraints more compatible
with the API of a typical Mixed Integer Programming solver. Pseudo-Boolean constraints
(weighted-sum over Boolean variables) are converted such that only positive Boolean variables
remain on the left-hand side of the comparisons. For example, the expression ¬p + q + r ≥ 1
is re-written as −p + q + r ≥ 0 by creating a negative weight and allowing no negation
operator in the formula. Input constraints must be linear.
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Conversion of flat expressions to CNF

It is required when using SAT-solvers as backend solvers. This transformation rewrites any
Boolean operator with Boolean variables as arguments to CNF. For example, (w∧x)∨ (y∧ z)
is re-written in

(w ∨ y) ∧ (w ∨ z) ∧ (x ∨ y) ∧ (x ∨ z) (6)

Input must ensure only boolean implications

Push negation to leaves

This one simplifies the number of nodes in the expression tree. The reformulation applies
simple equivalence rules such as DeMorgan’s laws to make sure the only negation operators
left in the tree are bound to Boolean variables or global constraints. For example, it would
transform the expression ¬(a ∨ b) into ¬a ∧ ¬b, or the expression ¬(a ≤ b) into a > b.
The negation of a global constraint such as ¬AllDifferent(a, b, c) can not be simplified
any further, except by decomposing the global constraint first. This will happen in the
“decomposing globals” transformation, depending on solver support.

Simplification of Boolean comparisons

This operation can be done when a Boolean expression is compared to a constant. In that
case, it is trivial to convert the Boolean expression at hand to itself or to its negation. For
example, comparison b < 1, where b is a Boolean variable, can be simplified to ¬b. And
b ≥ True can be converted to just the literal b.
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