Tutorial: Optimization in CP

Dagstuhl Seminar: Interactions in Constraint Optimization

Hélene Verhaeghe - helene.verhaeghe@uclouvain.be

8 September 2025

Dagstuhl Seminar 25371 - Interactions in Constraint Optimization

Constraint programming, a combinatorial optimization tool CLouvain

Area: 88

The Constraint Programming paradigm UCLouvain

The Constraint Programming paradigm UCLouvain

Problem

i

UCLouvain

The Constraint Programming paradigm

Problem Model

2

UCLouvain

The Constraint Programming paradigm

Problem Model Search

- BION©

UCLouvain

The Constraint Programming paradigm

Problem Model Search Solver

2

i
®
|

S5
e

UCLouvain

The Constraint Programming paradigm

Model Search Solver Solution

@R

Problem

2

UCLouvain

The Constraint Programming paradigm

Problem Model Search Solver Solution

B-Be-R &
\

UCLouvain

The Constraint Programming paradigm

Problem Model Search Solver Solution

W@ R
\
(x)

Variables

UCLouvain

The Constraint Programming paradigm

Model Search Solver Solution

@R
\

(<) @

Variables Constraints

Problem

2

UCLouvain

The Constraint Programming paradigm

Problem Model Search Solver Solution

BBe-R &
\ \
(<) @

Variables Constraints

UCLouvain

The Constraint Programming paradigm

Model Search Solver Solution

@R
\ \
¢ @ || @

Variables Constraints Propagators

Problem

2

UCLouvain

The Constraint Programming paradigm

Model Search Solver Solution

@ R—
\ \
) @ B

Variables Constraints Propagators Fixed-point

Problem

2

UCLouvain

The Constraint Programming paradigm

Model Search Solver Solution

@R
\ \
¢ 0 || B & 4

Variables Constraints Propagators Fixed-point Search

Problem

2

Model

Variety of Variables types UCLouvain

X D(X)

Represent unknowns of the problem

Variable g

Variety of Variables types UCLouvain

X D(X)

boolean {false,true} (or {0,1})

Represent unknowns of the problem

Variable g

Variety of Variables types UCLouvain

X D(X)
boolean {false,true} (or {0,1})
integer {..-2-1,0,1,2,..}C Z

Represent unknowns of the problem

Variable g

Variety of Variables types UCLouvain

X D(X)
boolean {false,true} (or {0,1})
integer {..-2-1,0,1,2,..}C Z

set ({1,2.3},{1,2},{3.4},..}

Represent unknowns of the problem

Variable g

Variety of Variables types UCLouvain

X D(X)

.H. -0 -0 00

graph { % % }

Represent unknowns of the problem

Ref: " CP(Graph): Introducing a Graph Computation Domain in Constraint Programming”,
x by G. Dooms, Y. Deville, and P. Dupont, CP2005
Variable g

Variety of Variables types UCLouvain

X D(X)

interval {[1,2], [2,9], [3.5].-.-}

Represent unknowns of the problem

Ref: Interval constraint programming in C++,
x by E. Hyvénen, S. De Pascale, A. Lethola, Constraint Programming, 1994
Variable g

iables types UCLouvain

/ N
¥ AN
sequence o a - b w
c “d S e
Represent unknowns of the problem
Ref: Sequence Variables for Routing Problems,
[x] by A. Delecluse, P. Schaus, P. Van Hentenryck, CP2022

Variable g

Types of constraints UCLouvain

© 4

Constraint

Types of constraints UCLouvain

e logical constraints: XV Y, X = Y,...

© 4

Constraint

Types of constraints UCLouvain

e logical constraints: XV Y, X = Y,...
e arithmetic constraints: X + Y == Z, min(X,Y,Z) > 3,...

© 4

Constraint

Types of constraints UCLouvain

e logical constraints: XV Y, X = Y,...
e arithmetic constraints: X + Y == Z, min(X,Y,Z) > 3,...
e global constraints: AllDifferent, Circuit, NValues, GCC,

Cumulative, ...

© 4

Constraint

Types of constraints UCLouvain

e logical constraints: XV Y, X = Y,...
e arithmetic constraints: X + Y == Z, min(X,Y,Z) > 3,...
e global constraints: AllDifferent, Circuit, NValues, GCC,

Cumulative, ...

The goal of a global constraint is to capture a relation between a

non-fixed number of variables

© 4

Constraint

Example: Circuit constraint UCLouvain

Goal of global constraints
Capture a relation between a

non-fixed number of variables

given NY =0, SF =1,...
D(succi) = {0,1,...., N — 1} \ {i}

Circuit([suceny, succsr, ...])

Constraint

Example: Circuit constraint UCLouvain

Goal of global constraints
Capture a relation between a

non-fixed number of variables

given NY =0, SF =1,...
D(succi) = {0,1,...., N — 1} \ {i}
Circuit([suceny, succsr, ...])

min Y dist(/,succ;)

Constraint

Objective UCLouvain

minimise/maximise smth

Examples:
minimise X
maximise sum(X,Y,Z)

minimise NValue(X)

Search

The search, a guide for the search space exploration UCLouvain

e Heuristic guiding the construction of the search tree

Search

The search, a guide for the search space exploration UCLouvain

e Heuristic guiding the construction of the search tree

e Goal: exploring the search space efficiently

Search

The search, a guide for the search space exploration UCLouvain

Search

e Heuristic guiding the construction of the search tree
e Goal: exploring the search space efficiently

e How: Choose a decision to perform, given the current state of the search

e decision = a choice of variable and a value to assign it to

The search, a guide for the search space exploration UCLouvain

Heuristic guiding the construction of the search tree

Goal: exploring the search space efficiently
How: Choose a decision to perform, given the current state of the search
e decision = a choice of variable and a value to assign it to

First-Fail principle: if a decision leads to a fail, it is better to have it early in
the search tree, to allow the pruning of many decisions

e Ref: "Increasing tree search efficiency for constraint satisfaction problems”, by R.
Haralick and G. Elliott, 1JCAI 1979

Search v

Min-Dom Heuristic UCLouvdin

Given D(X) ={0,1,2} and D(Y) = {0,1}

Search

Min-Dom Heuristic UCLouvdin

Given D(X) ={0,1,2} and D(Y) = {0,1}

Search

Min-Dom Heuristic UCLouvdin

Given D(X) ={0,1,2} and D(Y) = {0,1}

Search

Min-Dom Heuristic UCLouvdin

Given D(X) ={0,1,2} and D(Y) = {0,1}

Search

Min-Dom Heuristic UCLouvdin

Given D(X) ={0,1,2} and D(Y) = {0,1}

Search

Min-Dom Heuristic UCLouvain

Given D(X) ={0,1,2} and D(Y) = {0,1}

Selecting smallest domain first leads to fewer nodes

Search

Dom/Deg Heuristic UCLouvain

| D(X) |
Deg(X)

min

e Deg(X) is the number of constraints where X is involved

e Idea: target small domains first (smaller tree), but also variables that might
be in the center of conflicts (fail early)

Search

Activity-Based Search (ABS) Heuristic UCLouvain

e A(X) is the activity indicator
e At each decision:
e A(X) = A(X) x « for each unbound X (decay)
o A(X) = A(X)+ 1 if D(X) have been modified by the decision

e Idea: Variables whose domains shrink easily are at the center of conflicts (fail

early)
e Usually initialised by a bit of random search first

Search 0

Conflict Ordering Search (COS) Heuristic UCLouvain

max timestamp(X)

e timestamp(X) is the last time a decision on X led to a dead end
e At each decision, if there is a failure (dead end):

e timestamp(X) = time, where X is the variable at the decision

e Idea: fix variables at the heart of conflict first (fail early)

Search 11

Solver

Propagators UCLouvain

B

Y m—)
Propagator

12

Propagators UCLouvain

Goal: Filter invalid values

=

B

Y m—)
Propagator

12

Propagators UCLouvain

Goal: Filter invalid values

=

Input

v

domains

B

Y m—)
Propagator

12

Propagators UCLouvain

Goal: Filter invalid values

Input Output

% ——% updated domains

U E—

v

domains

B

Y m—)
Propagator

12

Propagators UCLouvain

Goal: Filter invalid values

Input Output

% ——% updated domains

U E—

v

domains

D(X)=D(Y)={0,1},
D(2)={0,1,2}

B

Y m—)
Propagator

12

Propagators UCLouvain

Goal: Filter invalid values

Input Output

% ——% updated domains

U E—

v

domains

D(X)=D(Y)={0,1},

AllDifferent(X,Y,Z
D(2)={0,1,2} ifferent(X,Y,Z)

B

Y m—)
Propagator

12

Propagators UCLouvain

Goal: Filter invalid values

Input Output

% ——% updated domains

U E—

v

domains

D(X)=D(Y)={0,1},
D(2)={0,1,2}

D(X)=D(Y)={0,1},

AllDifferent(X,Y,Z)
D(z)={2}

B

Y m—)
Propagator

12

Propagators UCLouvain

Goal: Filter invalid values

Input Output

% ——% updated domains

U E—

v

domains

D(X)=D(2)={0,1},
D(Y)={0,1,2}

B

Y m—)
Propagator

12

Propagators UCLouvain

Goal: Filter invalid values

Input Output

% ——% updated domains

U E—

v

domains

D(X)=D(2)={0,1},

D(Y)={0,1,2} Xty=2

B

Y m—)
Propagator

12

Propagators UCLouvain

Goal: Filter invalid values

Input Output
domains > % ——% updated domains
U —
D(X)=D(Z)={0,1}, - D(X)=D(Z)={0,1},
D(Y)={0,1,2} Xry=2 D(v)={0,1}

B

Y m—)
Propagator

12

Propagators UCLouvain

Goal: Filter invalid values

Input Output
domains > % ——% updated domains
U —
D(X)=D(Z)={0,1}, - D(X)=D(Z)={0,1},
D(Y)={0,1,2} Xry=2 D(v)={0,1}

. The propagator algorithm is tailored to the semantics of the
% constraint

P Y m—) 12
ropagator

Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

B

Y m—)
Propagator

13

Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z))

B

Y m—)
Propagator

13

Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z))

D(X) = [0, 5]
D(Y) = [0,4]
D(z) = 13.8]

B

Y m—)
Propagator

13

Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z))

X Y Z
D(X) = [0,5]

D(Y) = [0,4] 0 3 3
D(Z) = [3,8] 5 0 5

B

Y m—)
Propagator

13

Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z))

D(X) = [0, 5]
D(Y) = [0,4]
D(z) = 13.8]

w b~ 0o | X
pr O o w| <<
~N > 0w | N

B

Y m—)
Propagator

13

Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z))

D(X) = [0, 5]
D(Y) = [0,4]
D(z) = 13.8]

AN WS OO | X
A, OO w| XK
O W~ >~ O W N

B

Y m—)
Propagator

13

Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z))

D(X) = [0, 5]
D(Y) = [0,4]
D(z) = 13.8]

Support for every
bound, no filtering

AN WS OO | X
A, OO w| XK
O W~ >~ O W N

B

Y m—)
Propagator

13

Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z)) Global Arc Consistant (GAC)
D(X) =0, 5]
D(Y) =10,4]
D(Z) = [3.9]

Support for every
bound, no filtering

AN WS OO | X
A, OO w| XK
O W~ >~ O W N

B

Y m—)
Propagator

13

Strength of propagator

UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z))

D(X) =0, 5]
D(Y) = [0,4]
D(Z) = [3,8]

Support for every
bound, no filtering

AN WS OOO| X
A, OO w| XK
O W~ >~ O W N

B

Y m—)
Propagator

Global Arc Consistant (GAC)

W = | X

o o N | <

o1 W W | N

13

Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Support for every
bound, no filtering

Bound Consistant (BC(Z)) Global Arc Consistant (GAC)
D(X) = [0.5] XY Z XY Z XY Z
D(Y) = [0,4] 0 3 3 1 2 3 1 2 3
D(Z) = [3,9] 5 0 5 3 0 3 1 4 5

4 0 4 5 0 5
3 4 7 3 0 3
2 1 3
4 4 8

B

Y m—)
Propagator

13

Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z)) Global Arc Consistant (GAC)
X Y Z X Y Z X Y Z
D(X) =1[0,5]
D(Y) = [0,4] 0 3 3 1 2 3 1 2 3
D(Z) = [3,8] 5 0 5 3 0 3 1 4 5
4 0 4 5 0 5 3 0 3
Support for every 3 4 7 3 0 3 1 4 5
bound, no filtering 2 1 3
4 4 8

B

—
Propagator

13

Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z)) Global Arc Consistant (GAC)
X Y Z X Y Z X Y Z
D(X) =1[0,5]
D(Y) = [0,4] 0 3 3 1 2 3 1 2 3
D(Z) = [3,8] 5 0 5 3 0 3 1 4 5
4 0 4 5 0 5 3 0 3
Support for every 3 4 7 3 0 3 1 4 5
bound, no filtering 2 1 3
4 4 8

No support for X=0, Z=6, Z=8!

B

—
Propagator

13

Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z)) Global Arc Consistant (GAC)
X Y 7z XY Z XY Z
D(X) =0, 5]
D(Y) = [0,4] 0 3 3 1 2 3 1 2 3
D(Z) = [3,8] 5 0 5 3 0 3 1 4 5
4 0 4 5 0 5 3.0 3
Support for every 3 4 7 3 0 3 1 45
bound, no filtering 2 1 3
4 4 8 No support for X=0, Z=6, Z=8!
% Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

P — 13
ropagator

Example of propagator: AllDifferent UCLouvain

Filter invalid values

J%j Reference: ” A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator W

Example of propagator: AllDifferent UCLouvain

Filter invalid values

J%j Reference: ” A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator W

Example of propagator: AllDifferent UCLouvain

Filter invalid values

J%j Reference: ” A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator W

Example of propagator: AllDifferent UCLouvain

Filter invalid values

J%j Reference: ” A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator W

Example of propagator: AllDifferent UCLouvain

Filter invalid values

J%j Reference: ” A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator W

Example of propagator: AllDifferent UCLouvain

Filter invalid values

J%j Reference: ” A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator W

Example of propagator: AllDifferent UCLouvain

Filter invalid values

J%j Reference: ” A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator W

Example of propagator: AllDifferent UCLouvain

Filter invalid values

J%j Reference: ” A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator W

Example of propagator: AllDifferent UCLouvain

Filter invalid values

J%j Reference: ” A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator W

The fixed-point algorithm: scheduling the calls to constraint UCLouvain

Schedule constraints until no
more values can be removed

s

STOT

Fixd—pint LS

The fixed-point algorithm: scheduling the calls to constraint UCLouvain

Propagator Propagator
Schedule constraints until no . .
more values can be removed % %

B o —E

Propagator Propagator

Fixd—pint LS

The fixed-point algorithm: scheduling the calls to constraint UCLouvain

s

STOT

Fixd—pint 20

The fixed-point algorithm: scheduling the calls to constraint UCLouvain

s

STOT

Fixd—pint 20

The fixed-point algorithm: scheduling the calls to constraint UCLouvain

X1 X2 X3 X4 X5 X6

Propagating: I:I Queue: G, G4
=

STOT

Fixd—pint 1o

The fixed-point algorithm: scheduling the calls to constraint UCLouvain

X1 Xo X3 X4 X5 X6

Propagating: Queue: G
=

STOT

Fixd—pint 1o

The fixed-point algorithm: scheduling the calls to constraint UCLouvain

X1 Xo X3 X4 X5 X6

Propagating: Queue: G
=

STOT

Fixd—pint 1o

The fixed-point algorithm: scheduling the calls to constraint UCLouvain

X1 X2 X3 X4 X5 X6

Propagating: I:I Queue: G, ¢, G3
=

STOT

Fixd—pint 16

The fixed-point algorithm: scheduling the calls to constraint UCLouvain

X1 X2 .'X.?, X4® X5 X6

Propagating: I:I Queue: G, G, G

=
N

Fixd—pint

16

The fixed-point algorithm: scheduling the calls to constraint UCLouvain

s

STOT

Fixd—pint 20

The search tree exploration UCLouvain

Explore the solution space

& :

Search

The search tree exploration UCLouvain

Explore the solution space

X1 = V;

& :

Search

The search tree exploration UCLouvain

Explore the solution space

& :

Search

The search tree exploration UCLouvain

Explore the solution space

& :

Search

The search tree exploration UCLouvain

Explore the solution space

& :

Search

The search tree exploration UCLouvain

Explore the solution space

& :

Search

The search tree exploration UCLouvain

Explore the solution space

& :

Search

The search tree exploration UCLouvain

Explore the solution space

& :

Search

The search tree exploration UCLouvain

Explore the solution space

& :

Search

The search tree exploration UCLouvain

Explore the solution space

& :

Search

The search tree exploration UCLouvain

Explore the solution space

& :

Search

Search tree for an optimal value UCLouvain

obj: minimum x O

& m

Search

Search tree for an optimal value UCLouvain

obj: minimum x

X1 = V;

& m

Search

Search tree for an optimal value UCLouvain

obj: minimum x

X = Vo

& m

Search

Search tree for an optimal value UCLouvain

obj: minimum x

& m

Search

Search tree for an optimal value UCLouvain

obj: minimum x

add cst: x < obj(s1)

& m

Search

Search tree for an optimal value UCLouvain

obj: minimum x

add cst: x < obj(s1)

& m

Search

Search tree for an optimal value UCLouvain

obj: minimum x

add cst: x < obj(s2)

& m

Search

Search tree for an optimal value UCLouvain

obj: minimum x

add cst: x < obj(s2)

& m

Search

Search tree for an optimal value UCLouvain

obj: minimum x

add cst: x < obj(s2)

& m

Search

Search tree for an optimal value UCLouvain

obj: minimum x

add cst: x < obj(s2)

& m

Search

Search tree for an optimal value UCLouvain

obj: minimum x

add cst: x < obj(s3)

& m

Search

Search tree for an optimal value UCLouvain

obj: minimum x

add cst: x < obj(s3)

& m

Search

Search tree for an optimal value UCLouvain

obj: minimum x

add cst: x < obj(s3)

[optimal solution proven!j

& m

Search

Backtracking structures UCLouvain

How to go back in the search?

Before decision, set "state save points” you can go back to

Copying Trailing
e save: create restoring operation for
e save: copy the required part of the state each modification since last save
e restore: replace the state with the copy e restore: revert the modifications one by
one

Propagators can benefit by having incremental algorithms

& w

Search

Huge search space UCLouvain

& :

Search

Huge search space UCLouvain

& :

Search

Huge search space UCLouvain

& :

Search

Huge search space UCLouvain

& :

Search

Huge search space UCLouvain

& :

Search

Huge search space UCLouvain

& :

Search

Huge search space UCLouvain

& :

Search

Huge search space UCLouvain

C——pP

¢

—

What to do when the search space is too big?

& :

Search

Incomplete search UCLouvain

& 21

Search

Incomplete search UCLouvain

& 21

Search

Incomplete search UCLouvain

& 21

Search

Incomplete search UCLouvain

& 21

Search

Incomplete search UCLouvain

Meta-heuristics:

& 21

Search

Incomplete search UCLouvain

Meta-heuristics:

e Resets with non-deterministic searches

& 21

Search

Incomplete search UCLouvain

Meta-heuristics:
e Resets with non-deterministic searches
e Large Neighborhood search (LNS): search for a
good solution, relax part of the solution, restart
from the partial solution

& 21

Search

UCLouvain

Incomplete search

Meta-heuristics:
e Resets with non-deterministic searches

e Large Neighborhood search (LNS): search for a
good solution, relax part of the solution, restart
from the partial solution

e Portfolio searches: try multiple search
strategies for a bit of time

& 21

Search

UCLouvain

Incomplete search

Meta-heuristics:
e Resets with non-deterministic searches

e Large Neighborhood search (LNS): search for a
good solution, relax part of the solution, restart
from the partial solution

e Portfolio searches: try multiple search
strategies for a bit of time

& 21

Search

Incomplete search UCLouvain

Meta-heuristics:
e Resets with non-deterministic searches

e Large Neighborhood search (LNS): search for a
good solution, relax part of the solution, restart
from the partial solution

e Portfolio searches: try multiple search
strategies for a bit of time

Idea: try a diversity of smaller subspace

& 21

Search

Incomplete search UCLouvain

Meta-heuristics:
e Resets with non-deterministic searches

e Large Neighborhood search (LNS): search for a
good solution, relax part of the solution, restart
from the partial solution

e Portfolio searches: try multiple search
strategies for a bit of time

Idea: try a diversity of smaller subspace

No guarantee of optimality!

& 21

Search

Hybrids of techniques

MDD propagators (with DD input) UCLouvain

Table constraint

<
N

W NNN R R R
N H W W~ = N | X
W WN RN R =
N NN R N R

22

MDD propagators (with DD input) UCLouvain

MDD constraint

Table constraint R A~
17 2 3 w

W X Y Z LN, L
1 2 1 1 | ?\?*
1 1 1 1 2 1 3 1. 2 X
1 1 2 2 ¢\?¢\\?¢¢
2 3 1 1 .\ 0
2 3 2 2 11 2 3 ¢
2 1 3 2 %f igf v
AN

3 2 3 2 '
1 2 7

VR4 .

v

Reference: ” Compact-MDD: Efficiently Filtering (s) MDD Constraints with Reversible Sparse Bit-sets”,

by H. Verhaeghe, C. Lecoutre, P. Schaus, 1JCAI18 22

MDD propagators (with DD input) UCLouvain

MDD constraint

Table constraint

—
w

=

—_
N R W W=k N >

W W N RN = =

_ =
—_

v

—_

A

wW NN DN

N NN RN = =
[
N

o
\o’{w)
\.{w—o
€-N-»{-<-»<4-X-»¢-Z-»

H
8
N

Reference: ” Compact-MDD: Efficiently Filtering (s) MDD Constraints with Reversible Sparse Bit-sets”,

by H. Verhaeghe, C. Lecoutre, P. Schaus, IJCAI18 22

Lazy Clause Generation (with SAT clauses) UCLouvain

Constraints (2009) 14:357-391
DOI 10.1007/s10601-008-9064-x

Propagation via lazy clause generation

Olga Ohrimenko - Peter J. Stuckey - Michael Codish

Published online: 13 January 2009
© Springer Science + Business Media, LLC 2009

Abstract Finite domain propagation solvers effectively represent the possible values
of variables by a set of choices which can be naturally modelled as Boolean variables.
In this paper we describe how to mimic a finite domain propagation engine, by map-
ning nronaeators into clauses in a SAT solver. This immediatelv results in strone

23

Proof Loging Solvers (with PB proofs) UCLouvain

24

Proof Loging Solvers (with PB proofs) UCLouvain

Is the problem solvable?

Easy to prove, here is a solution!

24

Proof Loging Solvers (with PB proofs) UCLouvain

Is the problem solvable?
Easy to prove, here is a solution!
Is the problem unsolvable?

Having no solution is not really a proof... maybe we did not find it?

24

Proof Loging Solvers (with PB proofs) UCLouvain

Is the problem solvable?
Easy to prove, here is a solution!
Is the problem unsolvable?
Having no solution is not really a proof... maybe we did not find it?
Is the optimal really the optimal?

Well, | have my best so far... but again, maybe we did not find the best?

24

Proof Loging Solvers (with PB proofs)

UCLouvain

Is the problem solvable?

Is the probl

Is the optin

Well,

An Auditable Constraint Programming Solver
Stephan Gocht &

Lund University, Sweden
University of Copenhagen, Denmark

Ciaran McCreesh &

University of Glasgow, UK

Jakob Nordstrém &
University of Copenhagen, Denmark
Lund University, Sweden

—— Abstract

‘We describe the design and implementation of a new constraint programming solver that can produce
an auditable record of what problem was solved and how the solution was reached. As well as a
solution, this solver provides an independently verifiable proof log demonstrating that the solution is
correct. This proof log uses the VeriPB proof system, which is based upon cutting planes reasoning

with evtencinon variahlae Wa avnlain haw thie avetem can eninnart olahal canctrainte variahlae with

5 a solution!

not find it?

1d the best?

24

Portfolio Solvers UCLouvdin

Portfolio solvers combine multiple strategies in parallel and share information
(bounds, learned clauses,...) between the threads

25

Portfolio Solvers UCLouvain

Portfolio solvers combine multiple strategies in parallel and share information
(bounds, learned clauses,...) between the threads

e Portfolio searches: Variety of searches at
the same time

25

UCLouvain

Portfolio Solvers

Portfolio solvers combine multiple strategies in parallel and share information
(bounds, learned clauses,...) between the threads

Portfolio of Search heuristics and Large
Neighborhood Search

e Portfolio searches: Variety of searches at Constraint Simplex; cuts, MIP
. Propagation heuristics
the same time
e Hybrid CP-SAT-LP Or-Tools solver: Integer variable encoding
specialised solvers in parallel
SAT engine

Or-Tools CP-SAT-LP

25

Conclusion

Conclusion UCLouvdin

26

Conclusion UCLouvdin

Solving a problem using CP:

26

Conclusion UCLouvdin

Solving a problem using CP:

e Step 1: model the problem, using variables, constraints, and objective (if
one)

26

Conclusion UCLouvdin

Solving a problem using CP:

e Step 1: model the problem, using variables, constraints, and objective (if
one)

e Step 2: select a search heuristic based on the knowledge of the problem (or
use solver's default)

26

Conclusion UCLouvdin

Solving a problem using CP:

e Step 1: model the problem, using variables, constraints, and objective (if
one)

e Step 2: select a search heuristic based on the knowledge of the problem (or
use solver's default)

e Step 3: solver searches for solution(s) using search strategies, fixed-point
and propagators

26

Conclusion UCLouvdin

Solving a problem using CP:

e Step 1: model the problem, using variables, constraints, and objective (if
one)

e Step 2: select a search heuristic based on the knowledge of the problem (or
use solver's default)

e Step 3: solver searches for solution(s) using search strategies, fixed-point
and propagators

Constraint programming

26

Conclusion UCLouvdin

Solving a problem using CP:

e Step 1: model the problem, using variables, constraints, and objective (if
one)

e Step 2: select a search heuristic based on the knowledge of the problem (or
use solver's default)

e Step 3: solver searches for solution(s) using search strategies, fixed-point
and propagators

Constraint programming

e is modular and versatile

26

Conclusion UCLouvdin

Solving a problem using CP:

e Step 1: model the problem, using variables, constraints, and objective (if
one)

e Step 2: select a search heuristic based on the knowledge of the problem (or
use solver's default)

e Step 3: solver searches for solution(s) using search strategies, fixed-point
and propagators

Constraint programming

e is modular and versatile
e can adapt to one's needs

26

Thank you for listening!

Any questions?

https://hverhaeghe.bitbucket.io/

27

	Model
	Search
	Solver
	Hybrids of techniques
	Conclusion

