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Constraint programming, a combinatorial optimization tool

1



The Constraint Programming paradigm
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Variety of Variables types

Goal of variables
Represent unknowns of the problem

X D(X)

boolean {false,true} (or {0,1})

integer {...,-2,-1,0,1,2,...}⊂ Z

set {{1,2,3},{1,2},{3,4},...}

graph { , , , , }interval {[1,2], [2,5], [3,5],...}sequence
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Variety of Variables types

Goal of variables
Represent unknowns of the problem

Ref: ”CP(Graph): Introducing a Graph Computation Domain in Constraint Programming”,

by G. Dooms, Y. Deville, and P. Dupont, CP2005
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Variety of Variables types

Goal of variables
Represent unknowns of the problem

Ref: Interval constraint programming in C++,

by E. Hyvönen, S. De Pascale, A. Lethola, Constraint Programming, 1994
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Variety of Variables types

Goal of variables
Represent unknowns of the problem

Ref: Sequence Variables for Routing Problems,

by A. Delecluse, P. Schaus, P. Van Hentenryck, CP2022

X D(X)

boolean {false,true} (or {0,1})

integer {...,-2,-1,0,1,2,...}⊂ Z
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Types of constraints

• logical constraints: X ∨ Y , X → Y ,...

• arithmetic constraints: X + Y == Z , min(X ,Y ,Z ) ≥ 3,...

• global constraints: AllDifferent, Circuit, NValues, GCC ,

Cumulative,...

The goal of a global constraint is to capture a relation between a

non-fixed number of variables

Constraint
4
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Example: Circuit constraint

Goal of global constraints
Capture a relation between a

non-fixed number of variables

given NY = 0, SF = 1,...

D(succi ) = {0, 1, ...,N − 1} \ {i}

Circuit([succNY , succSF , ...])

min
∑

dist(i ,succi )

Constraint
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Objective

minimise/maximise smth

Examples:

minimise X

maximise sum(X,Y,Z)

minimise NValue(X)

Modle
6
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The search, a guide for the search space exploration

• Heuristic guiding the construction of the search tree

• Goal: exploring the search space efficiently

• How: Choose a decision to perform, given the current state of the search
• decision = a choice of variable and a value to assign it to

• First-Fail principle: if a decision leads to a fail, it is better to have it early in
the search tree, to allow the pruning of many decisions

• Ref: ”Increasing tree search efficiency for constraint satisfaction problems”, by R.

Haralick and G. Elliott, IJCAI 1979
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Min-Dom Heuristic

Given D(X ) = {0, 1, 2} and D(Y ) = {0, 1}

X=0 X=1 X=2

Y=0 Y=1 Y=0 Y=1 Y=0 Y=1

Y=0 Y=1

X=0 X=1 X=2 X=0 X=1 X=2

Selecting smallest domain first leads to fewer nodes
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Dom/Deg Heuristic

min
| D(X ) |
Deg(X )

• Deg(X ) is the number of constraints where X is involved

• Idea: target small domains first (smaller tree), but also variables that might

be in the center of conflicts (fail early)

Search 9



Activity-Based Search (ABS) Heuristic

max
A(X )

| D(X ) |

• A(X ) is the activity indicator
• At each decision:

• A(X ) = A(X )× α for each unbound X (decay)

• A(X ) = A(X ) + 1 if D(X ) have been modified by the decision

• Idea: Variables whose domains shrink easily are at the center of conflicts (fail

early)

• Usually initialised by a bit of random search first

Search 10



Conflict Ordering Search (COS) Heuristic

max timestamp(X )

• timestamp(X ) is the last time a decision on X led to a dead end

• At each decision, if there is a failure (dead end):
• timestamp(X ) = time, where X is the variable at the decision

• Idea: fix variables at the heart of conflict first (fail early)

Search 11
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Propagators

Goal: Filter invalid values

Input

domains

Output

updated domains

D(X)=D(Y)={0,1},
D(Z)={0,1,2}

AllDifferent(X,Y,Z)
D(X)=D(Y)={0,1},

D(Z)={2}
D(X)=D(Z)={0,1},

D(Y)={0,1,2} X+Y=Z
D(X)=D(Z)={0,1},

D(Y)={0,1}

The propagator algorithm is tailored to the semantics of the
constraint

Propagator 12
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Strength of propagator

Given D(X ) = {0, 1, 3, 5}, D(Y ) = {0, 2, 4} and D(Z ) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X ) = [0, 5]

D(Y ) = [0, 4]

D(Z ) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13
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Example of propagator: AllDifferent

Goal of propagators
Filter invalid values
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Reference: ”A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94
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The fixed-point algorithm: scheduling the calls to constraints

Goal of fixed-point
Schedule constraints until no

more values can be removed
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The search tree exploration

Goal of the search
Explore the solution space
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Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3
s1s1

add cst: x < obj(s1)
x3 ̸= v3

s2s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!
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Backtracking structures

How to go back in the search?

Before decision, set ”state save points” you can go back to

Copying Trailing

• save: copy the required part of the state

• restore: replace the state with the copy

• save: create restoring operation for

each modification since last save

• restore: revert the modifications one by

one

Propagators can benefit by having incremental algorithms

Search 19



Huge search space

What to do when the search space is too big?
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Incomplete search

Meta-heuristics:

• Resets with non-deterministic searches

• Large Neighborhood search (LNS): search for a

good solution, relax part of the solution, restart

from the partial solution

• Portfolio searches: try multiple search

strategies for a bit of time

• ...

Idea: try a diversity of smaller subspace

No guarantee of optimality!
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Hybrids of techniques



MDD propagators (with DD input)

Table constraint

W X Y Z

1 2 1 1

1 1 1 1

1 1 2 2

2 3 1 1

2 3 2 2

2 1 3 2

3 2 3 2

MDD constraint

Root

Sink

1 2 3

2 1 3 1 2

1 1 2 3

1 2

1

1

2

2

W

X

Y

Z

Reference: ”Compact-MDD: Efficiently Filtering (s) MDD Constraints with Reversible Sparse Bit-sets”,

by H. Verhaeghe, C. Lecoutre, P. Schaus, IJCAI18
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Lazy Clause Generation (with SAT clauses)

23



Proof Loging Solvers (with PB proofs)

Is the problem solvable?

Easy to prove, here is a solution!

Is the problem unsolvable?

Having no solution is not really a proof... maybe we did not find it?

Is the optimal really the optimal?

Well, I have my best so far... but again, maybe we did not find the best?
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Portfolio Solvers

Portfolio solvers combine multiple strategies in parallel and share information

(bounds, learned clauses,...) between the threads

• Portfolio searches: Variety of searches at

the same time

• Hybrid CP-SAT-LP Or-Tools solver:

specialised solvers in parallel

Or-Tools CP-SAT-LP
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Solving a problem using CP:

• Step 1: model the problem, using variables, constraints, and objective (if

one)

• Step 2: select a search heuristic based on the knowledge of the problem (or

use solver’s default)

• Step 3: solver searches for solution(s) using search strategies, fixed-point

and propagators

Constraint programming

• is modular and versatile

• can adapt to one’s needs
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Thank you for listening!

Any questions?

https://hverhaeghe.bitbucket.io/
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