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Variety of Variables types UCLouvain

X D(X)
boolean {false,true} (or {0,1})
integer {..-2-1,0,1,2,..}C Z

set ({1,2.3},{1,2},{3.4},..}

Represent unknowns of the problem

Variable g



Variety of Variables types UCLouvain

X D(X)

.H. -0 -0 00

graph { % % }

Represent unknowns of the problem

Ref: " CP(Graph): Introducing a Graph Computation Domain in Constraint Programming”,
x by G. Dooms, Y. Deville, and P. Dupont, CP2005
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Variety of Variables types UCLouvain

X D(X)

interval {[1,2], [2,9], [3.5].-.-}

Represent unknowns of the problem

Ref: Interval constraint programming in C++,
x by E. Hyvénen, S. De Pascale, A. Lethola, Constraint Programming, 1994
Variable g



iables types UCLouvain

/ N
¥ AN
sequence o a - b w
c “d S e
Represent unknowns of the problem
Ref: Sequence Variables for Routing Problems,
[x] by A. Delecluse, P. Schaus, P. Van Hentenryck, CP2022

Variable g
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Types of constraints UCLouvain

e logical constraints: XV Y, X = Y,...
e arithmetic constraints: X + Y == Z, min(X,Y,Z) > 3,...
e global constraints: AllDifferent, Circuit, NValues, GCC,

Cumulative, ...

The goal of a global constraint is to capture a relation between a

non-fixed number of variables

© 4

Constraint



Example: Circuit constraint UCLouvain

Goal of global constraints
Capture a relation between a

non-fixed number of variables

given NY =0, SF =1,...
D(succi) = {0,1,...., N — 1} \ {i}

Circuit([suceny, succsr, ...])

Constraint



Example: Circuit constraint UCLouvain

Goal of global constraints
Capture a relation between a

non-fixed number of variables

given NY =0, SF =1,...
D(succi) = {0,1,...., N — 1} \ {i}
Circuit([suceny, succsr, ...])

min Y dist(/,succ;)

Constraint



Objective UCLouvain

minimise/maximise smth

Examples:
minimise X
maximise sum(X,Y,Z)

minimise NValue(X)
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The search, a guide for the search space exploration UCLouvain

Heuristic guiding the construction of the search tree

Goal: exploring the search space efficiently
How: Choose a decision to perform, given the current state of the search
e decision = a choice of variable and a value to assign it to

First-Fail principle: if a decision leads to a fail, it is better to have it early in
the search tree, to allow the pruning of many decisions

e Ref: "Increasing tree search efficiency for constraint satisfaction problems”, by R.
Haralick and G. Elliott, 1JCAI 1979

Search v
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Min-Dom Heuristic UCLouvain

Given D(X) ={0,1,2} and D(Y) = {0,1}

Selecting smallest domain first leads to fewer nodes

Search



Dom/Deg Heuristic UCLouvain

| D(X) |
Deg(X)

min

e Deg(X) is the number of constraints where X is involved

e Idea: target small domains first (smaller tree), but also variables that might
be in the center of conflicts (fail early)

Search



Activity-Based Search (ABS) Heuristic UCLouvain

e A(X) is the activity indicator
e At each decision:
e A(X) = A(X) x « for each unbound X (decay)
o A(X) = A(X)+ 1 if D(X) have been modified by the decision

e Idea: Variables whose domains shrink easily are at the center of conflicts (fail

early)
e Usually initialised by a bit of random search first

Search 0



Conflict Ordering Search (COS) Heuristic UCLouvain

max timestamp(X)

e timestamp(X) is the last time a decision on X led to a dead end
e At each decision, if there is a failure (dead end):

e timestamp(X) = time, where X is the variable at the decision

e Idea: fix variables at the heart of conflict first (fail early)

Search 11
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Propagators UCLouvain

Goal: Filter invalid values

Input Output
domains > % ——% updated domains
U —
D(X)=D(Z)={0,1}, - D(X)=D(Z)={0,1},
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Propagators UCLouvain

Goal: Filter invalid values

Input Output
domains > % ——% updated domains
U —
D(X)=D(Z)={0,1}, - D(X)=D(Z)={0,1},
D(Y)={0,1,2} Xry=2 D(v)={0,1}

. The propagator algorithm is tailored to the semantics of the
% constraint

P Y m— ) 12
ropagator



Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==
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Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z))

X Y Z
D(X) = [0,5]

D(Y) = [0,4] 0 3 3
D(Z) = [3,8] 5 0 5

B

Y m— )
Propagator

13



Strength of propagator UCLouvain
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Bound Consistant (BC(Z))
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Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z)) Global Arc Consistant (GAC)
D(X) =0, 5]
D(Y) =10,4]
D(Z) = [3.9]

Support for every
bound, no filtering
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Strength of propagator

UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z))

D(X) =0, 5]
D(Y) = [0,4]
D(Z) = [3,8]

Support for every
bound, no filtering

AN WS OOO| X
A, OO w| XK
O W~ >~ O W N
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bound, no filtering
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Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z)) Global Arc Consistant (GAC)
X Y Z X Y Z X Y Z
D(X) =1[0,5]
D(Y) = [0,4] 0 3 3 1 2 3 1 2 3
D(Z) = [3,8] 5 0 5 3 0 3 1 4 5
4 0 4 5 0 5 3 0 3
Support for every 3 4 7 3 0 3 1 4 5
bound, no filtering 2 1 3
4 4 8

No support for X=0, Z=6, Z=8!
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Strength of propagator UCLouvain

Given D(X) = {0,1,3,5}, D(Y) = {0,2,4} and D(Z) = {3,5,6,8}, and X + Y ==

Bound Consistant (BC(Z)) Global Arc Consistant (GAC)
X Y 7z XY Z XY Z
D(X) =0, 5]
D(Y) = [0,4] 0 3 3 1 2 3 1 2 3
D(Z) = [3,8] 5 0 5 3 0 3 1 4 5
4 0 4 5 0 5 3.0 3
Support for every 3 4 7 3 0 3 1 45
bound, no filtering 2 1 3
4 4 8 No support for X=0, Z=6, Z=8!
% Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

P — 13
ropagator



Example of propagator: AllDifferent UCLouvain

Filter invalid values

J%j Reference: ” A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94
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Example of propagator: AllDifferent UCLouvain
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Example of propagator: AllDifferent UCLouvain

Filter invalid values

J%j Reference: ” A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94
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The fixed-point algorithm: scheduling the calls to constraint UCLouvain

Schedule constraints until no
more values can be removed
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Propagator Propagator
Schedule constraints until no . .
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The fixed-point algorithm: scheduling the calls to constraint UCLouvain

X1 X2 X3 X4 X5 X6

Propagating: I:I Queue: G, ¢, G3
=

STOT

Fixd—pint 16



The fixed-point algorithm: scheduling the calls to constraint UCLouvain

X1 X2 .'X.?, X4® X5 X6

Propagating: I:I Queue: G, G, G

=
N

Fixd—pint
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The fixed-point algorithm: scheduling the calls to constraint UCLouvain
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Search tree for an optimal value UCLouvain
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Search tree for an optimal value UCLouvain
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Search tree for an optimal value UCLouvain
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Search tree for an optimal value UCLouvain

obj: minimum x

add cst: x < obj(s3)

[optimal solution proven!j

& m
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Backtracking structures UCLouvain

How to go back in the search?

Before decision, set "state save points” you can go back to

Copying Trailing
e save: create restoring operation for
e save: copy the required part of the state each modification since last save
e restore: replace the state with the copy e restore: revert the modifications one by
one

Propagators can benefit by having incremental algorithms

& w

Search
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Huge search space UCLouvain
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What to do when the search space is too big?
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Incomplete search UCLouvain

Meta-heuristics:
e Resets with non-deterministic searches

e Large Neighborhood search (LNS): search for a
good solution, relax part of the solution, restart
from the partial solution

e Portfolio searches: try multiple search
strategies for a bit of time

Idea: try a diversity of smaller subspace

No guarantee of optimality!

& 21
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Hybrids of techniques




MDD propagators (with DD input) UCLouvain

Table constraint

<
N
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MDD propagators (with DD input) UCLouvain

MDD constraint

Table constraint R A~
17 2 3 w

W X Y Z LN, L
1 2 1 1 | ?\?*
1 1 1 1 2 1 3 1. 2 X
1 1 2 2 ¢\?¢\\?¢¢
2 3 1 1 .\ 0
2 3 2 2 11 2 3 ¢
2 1 3 2 %f igf v
AN

3 2 3 2 '
1 2 7

VR4 .

v

Reference: ” Compact-MDD: Efficiently Filtering (s) MDD Constraints with Reversible Sparse Bit-sets”,
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Propagation via lazy clause generation

Olga Ohrimenko - Peter J. Stuckey - Michael Codish

Published online: 13 January 2009
© Springer Science + Business Media, LLC 2009

Abstract Finite domain propagation solvers effectively represent the possible values
of variables by a set of choices which can be naturally modelled as Boolean variables.
In this paper we describe how to mimic a finite domain propagation engine, by map-
ning nronaeators into clauses in a SAT solver. This immediatelv results in strone
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Is the problem solvable?
Easy to prove, here is a solution!
Is the problem unsolvable?
Having no solution is not really a proof... maybe we did not find it?
Is the optimal really the optimal?

Well, | have my best so far... but again, maybe we did not find the best?
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Proof Loging Solvers (with PB proofs)

UCLouvain

Is the problem solvable?

Is the probl

Is the optin

Well,

An Auditable Constraint Programming Solver
Stephan Gocht &

Lund University, Sweden
University of Copenhagen, Denmark

Ciaran McCreesh &

University of Glasgow, UK

Jakob Nordstrém &
University of Copenhagen, Denmark
Lund University, Sweden

—— Abstract

‘We describe the design and implementation of a new constraint programming solver that can produce
an auditable record of what problem was solved and how the solution was reached. As well as a
solution, this solver provides an independently verifiable proof log demonstrating that the solution is
correct. This proof log uses the VeriPB proof system, which is based upon cutting planes reasoning

with evtencinon variahlae Wa avnlain haw thie avetem can eninnart olahal canctrainte variahlae with

5 a solution!

not find it?

1d the best?
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Portfolio Solvers

Portfolio solvers combine multiple strategies in parallel and share information
(bounds, learned clauses,...) between the threads

Portfolio of Search heuristics and Large
Neighborhood Search

e Portfolio searches: Variety of searches at Constraint Simplex; cuts, MIP
. Propagation heuristics
the same time
e Hybrid CP-SAT-LP Or-Tools solver: Integer variable encoding
specialised solvers in parallel
SAT engine

Or-Tools CP-SAT-LP
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Solving a problem using CP:

e Step 1: model the problem, using variables, constraints, and objective (if
one)

e Step 2: select a search heuristic based on the knowledge of the problem (or
use solver's default)

e Step 3: solver searches for solution(s) using search strategies, fixed-point
and propagators

Constraint programming

e is modular and versatile
e can adapt to one's needs
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Thank you for listening!

Any questions?

https://hverhaeghe.bitbucket.io/
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