
Tutorial: Optimization in CP

Dagstuhl Seminar: Interactions in Constraint Optimization

Hélène Verhaeghe - helene.verhaeghe@uclouvain.be

8 September 2025

Dagstuhl Seminar 25371 - Interactions in Constraint Optimization

Constraint programming, a combinatorial optimization tool

1

The Constraint Programming paradigm

Problem Model

+

Search

Variables Constraints

Solver

Propagators Fixed-point Search

Solution

2

The Constraint Programming paradigm

Problem

Model

+

Search

Variables Constraints

Solver

Propagators Fixed-point Search

Solution

2

The Constraint Programming paradigm

Problem Model

+

Search

Variables Constraints

Solver

Propagators Fixed-point Search

Solution

2

The Constraint Programming paradigm

Problem Model

+

Search

Variables Constraints

Solver

Propagators Fixed-point Search

Solution

2

The Constraint Programming paradigm

Problem Model

+

Search

Variables Constraints

Solver

Propagators Fixed-point Search

Solution

2

The Constraint Programming paradigm

Problem Model

+

Search

Variables Constraints

Solver

Propagators Fixed-point Search

Solution

2

The Constraint Programming paradigm

Problem Model

+

Search

Variables Constraints

Solver

Propagators Fixed-point Search

Solution

2

The Constraint Programming paradigm

Problem Model

+

Search

Variables

Constraints

Solver

Propagators Fixed-point Search

Solution

2

The Constraint Programming paradigm

Problem Model

+

Search

Variables Constraints

Solver

Propagators Fixed-point Search

Solution

2

The Constraint Programming paradigm

Problem Model

+

Search

Variables Constraints

Solver

Propagators Fixed-point Search

Solution

2

The Constraint Programming paradigm

Problem Model

+

Search

Variables Constraints

Solver

Propagators

Fixed-point Search

Solution

2

The Constraint Programming paradigm

Problem Model

+

Search

Variables Constraints

Solver

Propagators Fixed-point

Search

Solution

2

The Constraint Programming paradigm

Problem Model

+

Search

Variables Constraints

Solver

Propagators Fixed-point Search

Solution

2

Model

Variety of Variables types

Goal of variables
Represent unknowns of the problem

X D(X)

boolean {false,true} (or {0,1})

integer {...,-2,-1,0,1,2,...}⊂ Z

set {{1,2,3},{1,2},{3,4},...}

graph { , , , , }interval {[1,2], [2,5], [3,5],...}sequence

Variable 3

Variety of Variables types

Goal of variables
Represent unknowns of the problem

X D(X)

boolean {false,true} (or {0,1})

integer {...,-2,-1,0,1,2,...}⊂ Z

set {{1,2,3},{1,2},{3,4},...}

graph { , , , , }interval {[1,2], [2,5], [3,5],...}sequence

Variable 3

Variety of Variables types

Goal of variables
Represent unknowns of the problem

X D(X)

boolean {false,true} (or {0,1})

integer {...,-2,-1,0,1,2,...}⊂ Z

set {{1,2,3},{1,2},{3,4},...}

graph { , , , , }interval {[1,2], [2,5], [3,5],...}sequence

Variable 3

Variety of Variables types

Goal of variables
Represent unknowns of the problem

X D(X)

boolean {false,true} (or {0,1})

integer {...,-2,-1,0,1,2,...}⊂ Z

set {{1,2,3},{1,2},{3,4},...}

graph { , , , , }interval {[1,2], [2,5], [3,5],...}sequence

Variable 3

Variety of Variables types

Goal of variables
Represent unknowns of the problem

Ref: ”CP(Graph): Introducing a Graph Computation Domain in Constraint Programming”,

by G. Dooms, Y. Deville, and P. Dupont, CP2005

X D(X)

boolean {false,true} (or {0,1})

integer {...,-2,-1,0,1,2,...}⊂ Z

set {{1,2,3},{1,2},{3,4},...}

graph { , , , , }

interval {[1,2], [2,5], [3,5],...}sequence

Variable 3

Variety of Variables types

Goal of variables
Represent unknowns of the problem

Ref: Interval constraint programming in C++,

by E. Hyvönen, S. De Pascale, A. Lethola, Constraint Programming, 1994

X D(X)

boolean {false,true} (or {0,1})

integer {...,-2,-1,0,1,2,...}⊂ Z

set {{1,2,3},{1,2},{3,4},...}

graph { , , , , }

interval {[1,2], [2,5], [3,5],...}

sequence

Variable 3

Variety of Variables types

Goal of variables
Represent unknowns of the problem

Ref: Sequence Variables for Routing Problems,

by A. Delecluse, P. Schaus, P. Van Hentenryck, CP2022

X D(X)

boolean {false,true} (or {0,1})

integer {...,-2,-1,0,1,2,...}⊂ Z

set {{1,2,3},{1,2},{3,4},...}

graph { , , , , }interval {[1,2], [2,5], [3,5],...}

sequence

Variable 3

Types of constraints

• logical constraints: X ∨ Y , X → Y ,...

• arithmetic constraints: X + Y == Z , min(X ,Y ,Z) ≥ 3,...

• global constraints: AllDifferent, Circuit, NValues, GCC ,

Cumulative,...

The goal of a global constraint is to capture a relation between a

non-fixed number of variables

Constraint
4

Types of constraints

• logical constraints: X ∨ Y , X → Y ,...

• arithmetic constraints: X + Y == Z , min(X ,Y ,Z) ≥ 3,...

• global constraints: AllDifferent, Circuit, NValues, GCC ,

Cumulative,...

The goal of a global constraint is to capture a relation between a

non-fixed number of variables

Constraint
4

Types of constraints

• logical constraints: X ∨ Y , X → Y ,...

• arithmetic constraints: X + Y == Z , min(X ,Y ,Z) ≥ 3,...

• global constraints: AllDifferent, Circuit, NValues, GCC ,

Cumulative,...

The goal of a global constraint is to capture a relation between a

non-fixed number of variables

Constraint
4

Types of constraints

• logical constraints: X ∨ Y , X → Y ,...

• arithmetic constraints: X + Y == Z , min(X ,Y ,Z) ≥ 3,...

• global constraints: AllDifferent, Circuit, NValues, GCC ,

Cumulative,...

The goal of a global constraint is to capture a relation between a

non-fixed number of variables

Constraint
4

Types of constraints

• logical constraints: X ∨ Y , X → Y ,...

• arithmetic constraints: X + Y == Z , min(X ,Y ,Z) ≥ 3,...

• global constraints: AllDifferent, Circuit, NValues, GCC ,

Cumulative,...

The goal of a global constraint is to capture a relation between a

non-fixed number of variables

Constraint
4

Example: Circuit constraint

Goal of global constraints
Capture a relation between a

non-fixed number of variables

given NY = 0, SF = 1,...

D(succi) = {0, 1, ...,N − 1} \ {i}

Circuit([succNY , succSF , ...])

min
∑

dist(i ,succi)

Constraint
5

Example: Circuit constraint

Goal of global constraints
Capture a relation between a

non-fixed number of variables

given NY = 0, SF = 1,...

D(succi) = {0, 1, ...,N − 1} \ {i}

Circuit([succNY , succSF , ...])

min
∑

dist(i ,succi)

Constraint
5

Objective

minimise/maximise smth

Examples:

minimise X

maximise sum(X,Y,Z)

minimise NValue(X)

Modle
6

Search

The search, a guide for the search space exploration

• Heuristic guiding the construction of the search tree

• Goal: exploring the search space efficiently

• How: Choose a decision to perform, given the current state of the search
• decision = a choice of variable and a value to assign it to

• First-Fail principle: if a decision leads to a fail, it is better to have it early in
the search tree, to allow the pruning of many decisions

• Ref: ”Increasing tree search efficiency for constraint satisfaction problems”, by R.

Haralick and G. Elliott, IJCAI 1979

Search 7

The search, a guide for the search space exploration

• Heuristic guiding the construction of the search tree

• Goal: exploring the search space efficiently

• How: Choose a decision to perform, given the current state of the search
• decision = a choice of variable and a value to assign it to

• First-Fail principle: if a decision leads to a fail, it is better to have it early in
the search tree, to allow the pruning of many decisions

• Ref: ”Increasing tree search efficiency for constraint satisfaction problems”, by R.

Haralick and G. Elliott, IJCAI 1979

Search 7

The search, a guide for the search space exploration

• Heuristic guiding the construction of the search tree

• Goal: exploring the search space efficiently

• How: Choose a decision to perform, given the current state of the search
• decision = a choice of variable and a value to assign it to

• First-Fail principle: if a decision leads to a fail, it is better to have it early in
the search tree, to allow the pruning of many decisions

• Ref: ”Increasing tree search efficiency for constraint satisfaction problems”, by R.

Haralick and G. Elliott, IJCAI 1979

Search 7

The search, a guide for the search space exploration

• Heuristic guiding the construction of the search tree

• Goal: exploring the search space efficiently

• How: Choose a decision to perform, given the current state of the search
• decision = a choice of variable and a value to assign it to

• First-Fail principle: if a decision leads to a fail, it is better to have it early in
the search tree, to allow the pruning of many decisions

• Ref: ”Increasing tree search efficiency for constraint satisfaction problems”, by R.

Haralick and G. Elliott, IJCAI 1979

Search 7

Min-Dom Heuristic

Given D(X) = {0, 1, 2} and D(Y) = {0, 1}

X=0 X=1 X=2

Y=0 Y=1 Y=0 Y=1 Y=0 Y=1

Y=0 Y=1

X=0 X=1 X=2 X=0 X=1 X=2

Selecting smallest domain first leads to fewer nodes

Search 8

Min-Dom Heuristic

Given D(X) = {0, 1, 2} and D(Y) = {0, 1}

X=0 X=1 X=2

Y=0 Y=1 Y=0 Y=1 Y=0 Y=1

Y=0 Y=1

X=0 X=1 X=2 X=0 X=1 X=2

Selecting smallest domain first leads to fewer nodes

Search 8

Min-Dom Heuristic

Given D(X) = {0, 1, 2} and D(Y) = {0, 1}

X=0 X=1 X=2

Y=0 Y=1 Y=0 Y=1 Y=0 Y=1

Y=0 Y=1

X=0 X=1 X=2 X=0 X=1 X=2

Selecting smallest domain first leads to fewer nodes

Search 8

Min-Dom Heuristic

Given D(X) = {0, 1, 2} and D(Y) = {0, 1}

X=0 X=1 X=2

Y=0 Y=1 Y=0 Y=1 Y=0 Y=1

Y=0 Y=1

X=0 X=1 X=2 X=0 X=1 X=2

Selecting smallest domain first leads to fewer nodes

Search 8

Min-Dom Heuristic

Given D(X) = {0, 1, 2} and D(Y) = {0, 1}

X=0 X=1 X=2

Y=0 Y=1 Y=0 Y=1 Y=0 Y=1

Y=0 Y=1

X=0 X=1 X=2 X=0 X=1 X=2

Selecting smallest domain first leads to fewer nodes

Search 8

Min-Dom Heuristic

Given D(X) = {0, 1, 2} and D(Y) = {0, 1}

X=0 X=1 X=2

Y=0 Y=1 Y=0 Y=1 Y=0 Y=1

Y=0 Y=1

X=0 X=1 X=2 X=0 X=1 X=2

Selecting smallest domain first leads to fewer nodes

Search 8

Dom/Deg Heuristic

min
| D(X) |
Deg(X)

• Deg(X) is the number of constraints where X is involved

• Idea: target small domains first (smaller tree), but also variables that might

be in the center of conflicts (fail early)

Search 9

Activity-Based Search (ABS) Heuristic

max
A(X)

| D(X) |

• A(X) is the activity indicator
• At each decision:

• A(X) = A(X)× α for each unbound X (decay)

• A(X) = A(X) + 1 if D(X) have been modified by the decision

• Idea: Variables whose domains shrink easily are at the center of conflicts (fail

early)

• Usually initialised by a bit of random search first

Search 10

Conflict Ordering Search (COS) Heuristic

max timestamp(X)

• timestamp(X) is the last time a decision on X led to a dead end

• At each decision, if there is a failure (dead end):
• timestamp(X) = time, where X is the variable at the decision

• Idea: fix variables at the heart of conflict first (fail early)

Search 11

Solver

Propagators

Goal: Filter invalid values

Input

domains

Output

updated domains

D(X)=D(Y)={0,1},
D(Z)={0,1,2}

AllDifferent(X,Y,Z)
D(X)=D(Y)={0,1},

D(Z)={2}
D(X)=D(Z)={0,1},

D(Y)={0,1,2} X+Y=Z
D(X)=D(Z)={0,1},

D(Y)={0,1}

The propagator algorithm is tailored to the semantics of the
constraint

Propagator 12

Propagators

Goal: Filter invalid values

Input

domains

Output

updated domains

D(X)=D(Y)={0,1},
D(Z)={0,1,2}

AllDifferent(X,Y,Z)
D(X)=D(Y)={0,1},

D(Z)={2}
D(X)=D(Z)={0,1},

D(Y)={0,1,2} X+Y=Z
D(X)=D(Z)={0,1},

D(Y)={0,1}

The propagator algorithm is tailored to the semantics of the
constraint

Propagator 12

Propagators

Goal: Filter invalid values

Input

domains

Output

updated domains

D(X)=D(Y)={0,1},
D(Z)={0,1,2}

AllDifferent(X,Y,Z)
D(X)=D(Y)={0,1},

D(Z)={2}
D(X)=D(Z)={0,1},

D(Y)={0,1,2} X+Y=Z
D(X)=D(Z)={0,1},

D(Y)={0,1}

The propagator algorithm is tailored to the semantics of the
constraint

Propagator 12

Propagators

Goal: Filter invalid values

Input

domains

Output

updated domains

D(X)=D(Y)={0,1},
D(Z)={0,1,2}

AllDifferent(X,Y,Z)
D(X)=D(Y)={0,1},

D(Z)={2}
D(X)=D(Z)={0,1},

D(Y)={0,1,2} X+Y=Z
D(X)=D(Z)={0,1},

D(Y)={0,1}

The propagator algorithm is tailored to the semantics of the
constraint

Propagator 12

Propagators

Goal: Filter invalid values

Input

domains

Output

updated domains

D(X)=D(Y)={0,1},
D(Z)={0,1,2}

AllDifferent(X,Y,Z)
D(X)=D(Y)={0,1},

D(Z)={2}
D(X)=D(Z)={0,1},

D(Y)={0,1,2} X+Y=Z
D(X)=D(Z)={0,1},

D(Y)={0,1}

The propagator algorithm is tailored to the semantics of the
constraint

Propagator 12

Propagators

Goal: Filter invalid values

Input

domains

Output

updated domains

D(X)=D(Y)={0,1},
D(Z)={0,1,2}

AllDifferent(X,Y,Z)

D(X)=D(Y)={0,1},
D(Z)={2}

D(X)=D(Z)={0,1},
D(Y)={0,1,2} X+Y=Z

D(X)=D(Z)={0,1},
D(Y)={0,1}

The propagator algorithm is tailored to the semantics of the
constraint

Propagator 12

Propagators

Goal: Filter invalid values

Input

domains

Output

updated domains

D(X)=D(Y)={0,1},
D(Z)={0,1,2}

AllDifferent(X,Y,Z)
D(X)=D(Y)={0,1},

D(Z)={2}

D(X)=D(Z)={0,1},
D(Y)={0,1,2} X+Y=Z

D(X)=D(Z)={0,1},
D(Y)={0,1}

The propagator algorithm is tailored to the semantics of the
constraint

Propagator 12

Propagators

Goal: Filter invalid values

Input

domains

Output

updated domains

D(X)=D(Y)={0,1},
D(Z)={0,1,2}

AllDifferent(X,Y,Z)
D(X)=D(Y)={0,1},

D(Z)={2}

D(X)=D(Z)={0,1},
D(Y)={0,1,2}

X+Y=Z
D(X)=D(Z)={0,1},

D(Y)={0,1}

The propagator algorithm is tailored to the semantics of the
constraint

Propagator 12

Propagators

Goal: Filter invalid values

Input

domains

Output

updated domains

D(X)=D(Y)={0,1},
D(Z)={0,1,2}

AllDifferent(X,Y,Z)
D(X)=D(Y)={0,1},

D(Z)={2}

D(X)=D(Z)={0,1},
D(Y)={0,1,2} X+Y=Z

D(X)=D(Z)={0,1},
D(Y)={0,1}

The propagator algorithm is tailored to the semantics of the
constraint

Propagator 12

Propagators

Goal: Filter invalid values

Input

domains

Output

updated domains

D(X)=D(Y)={0,1},
D(Z)={0,1,2}

AllDifferent(X,Y,Z)
D(X)=D(Y)={0,1},

D(Z)={2}

D(X)=D(Z)={0,1},
D(Y)={0,1,2} X+Y=Z

D(X)=D(Z)={0,1},
D(Y)={0,1}

The propagator algorithm is tailored to the semantics of the
constraint

Propagator 12

Propagators

Goal: Filter invalid values

Input

domains

Output

updated domains

D(X)=D(Y)={0,1},
D(Z)={0,1,2}

AllDifferent(X,Y,Z)
D(X)=D(Y)={0,1},

D(Z)={2}

D(X)=D(Z)={0,1},
D(Y)={0,1,2} X+Y=Z

D(X)=D(Z)={0,1},
D(Y)={0,1}

The propagator algorithm is tailored to the semantics of the
constraint

Propagator 12

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Strength of propagator

Given D(X) = {0, 1, 3, 5}, D(Y) = {0, 2, 4} and D(Z) = {3, 5, 6, 8}, and X + Y == Z

Bound Consistant (BC(Z))

D(X) = [0, 5]

D(Y) = [0, 4]

D(Z) = [3, 8]

Support for every

bound, no filtering

X Y Z

0 3 3

5 0 5

4 0 4

3 4 7

2 1 3

4 4 8

Global Arc Consistant (GAC)

X Y Z

1 2 3

3 0 3

5 0 5

3 0 3

X Y Z

1 2 3

1 4 5

3 0 3

1 4 5

No support for X=0, Z=6, Z=8!

Side note: There exists another bound consistancy (BC(D)), slightly stronger than BC(Z)

Propagator 13

Example of propagator: AllDifferent

Goal of propagators
Filter invalid values

X

Y

Z

1

2

3

4

t

Reference: ”A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator 14

Example of propagator: AllDifferent

Goal of propagators
Filter invalid values

X

Y

Z

1

2

3

4

t

Reference: ”A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator 14

Example of propagator: AllDifferent

Goal of propagators
Filter invalid values

X

Y

Z

1

2

3

4

t

Reference: ”A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator 14

Example of propagator: AllDifferent

Goal of propagators
Filter invalid values

X

Y

Z

1

2

3

4

t

Reference: ”A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator 14

Example of propagator: AllDifferent

Goal of propagators
Filter invalid values

X

Y

Z

1

2

3

4

t

Reference: ”A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator 14

Example of propagator: AllDifferent

Goal of propagators
Filter invalid values

X

Y

Z

1

2

3

4

t

Reference: ”A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator 14

Example of propagator: AllDifferent

Goal of propagators
Filter invalid values

X

Y

Z

1

2

3

4

t

Reference: ”A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator 14

Example of propagator: AllDifferent

Goal of propagators
Filter invalid values

X

Y

Z

1

2

3

4

t

Reference: ”A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator 14

Example of propagator: AllDifferent

Goal of propagators
Filter invalid values

X

Y

Z

1

2

3

4

t

Reference: ”A filtering algorithm for constraints of difference in CSPs”, by J.-C. Régin, AAAI94

Propagator 14

The fixed-point algorithm: scheduling the calls to constraints

Goal of fixed-point
Schedule constraints until no

more values can be removed

Fixed-point

Propagator

PropagatorPropagator

Propagator

Propagator Propagator

Fixed-point 15

The fixed-point algorithm: scheduling the calls to constraints

Goal of fixed-point
Schedule constraints until no

more values can be removed

Fixed-point Propagator

PropagatorPropagator

Propagator

Propagator Propagator

Fixed-point 15

The fixed-point algorithm: scheduling the calls to constraints

x1 x2 x3 x4 x5 x6

C1 C2 C3 C4 C5

Propagating:

C2

Queue:

C2, C4C4C4, C1, C3

Fixed-point 16

The fixed-point algorithm: scheduling the calls to constraints

x1 x2 x3 x4 x5 x6

C1 C2 C3 C4 C5

Propagating:

C2

Queue:

C2, C4C4C4, C1, C3

Fixed-point 16

The fixed-point algorithm: scheduling the calls to constraints

x1 x2 x3 x4 x5 x6

C1 C2 C3 C4 C5

Propagating:

C2

Queue: C2, C4

C4C4, C1, C3

Fixed-point 16

The fixed-point algorithm: scheduling the calls to constraints

x1 x2 x3 x4 x5 x6

C1 C2 C3 C4 C5

Propagating: C2 Queue:

C2, C4

C4

C4, C1, C3

Fixed-point 16

The fixed-point algorithm: scheduling the calls to constraints

x1 x2 x3 x4 x5 x6

C1 C2 C3 C4 C5

Propagating: C2 Queue:

C2, C4

C4

C4, C1, C3

Fixed-point 16

The fixed-point algorithm: scheduling the calls to constraints

x1 x2 x3 x4 x5 x6

C1 C2 C3 C4 C5

Propagating:

C2

Queue:

C2, C4C4

C4, C1, C3

Fixed-point 16

The fixed-point algorithm: scheduling the calls to constraints

x1 x2 x3 x4 x5 x6

C1 C2 C3 C4 C5

Propagating:

C2

Queue:

C2, C4C4

C4, C1, C3

Fixed-point 16

The fixed-point algorithm: scheduling the calls to constraints

x1 x2 x3 x4 x5 x6

C1 C2 C3 C4 C5

Propagating:

C2

Queue:

C2, C4C4C4, C1, C3

Fixed-point 16

The search tree exploration

Goal of the search
Explore the solution space

x1 = v1

x2 = v2

x3 = v3 x3 ̸= v3

x2 ̸= v2

x1 ̸= v1

x4 = v4 x4 ̸= v4

x5 = v5 x5 ̸= v5

Search 17

The search tree exploration

Goal of the search
Explore the solution space

x1 = v1

x2 = v2

x3 = v3 x3 ̸= v3

x2 ̸= v2

x1 ̸= v1

x4 = v4 x4 ̸= v4

x5 = v5 x5 ̸= v5

Search 17

The search tree exploration

Goal of the search
Explore the solution space

x1 = v1

x2 = v2

x3 = v3 x3 ̸= v3

x2 ̸= v2

x1 ̸= v1

x4 = v4 x4 ̸= v4

x5 = v5 x5 ̸= v5

Search 17

The search tree exploration

Goal of the search
Explore the solution space

x1 = v1

x2 = v2

x3 = v3

x3 ̸= v3

x2 ̸= v2

x1 ̸= v1

x4 = v4 x4 ̸= v4

x5 = v5 x5 ̸= v5

Search 17

The search tree exploration

Goal of the search
Explore the solution space

x1 = v1

x2 = v2

x3 = v3 x3 ̸= v3

x2 ̸= v2

x1 ̸= v1

x4 = v4 x4 ̸= v4

x5 = v5 x5 ̸= v5

Search 17

The search tree exploration

Goal of the search
Explore the solution space

x1 = v1

x2 = v2

x3 = v3 x3 ̸= v3

x2 ̸= v2

x1 ̸= v1

x4 = v4 x4 ̸= v4

x5 = v5 x5 ̸= v5

Search 17

The search tree exploration

Goal of the search
Explore the solution space

x1 = v1

x2 = v2

x3 = v3 x3 ̸= v3

x2 ̸= v2

x1 ̸= v1

x4 = v4 x4 ̸= v4

x5 = v5 x5 ̸= v5

Search 17

The search tree exploration

Goal of the search
Explore the solution space

x1 = v1

x2 = v2

x3 = v3 x3 ̸= v3

x2 ̸= v2

x1 ̸= v1

x4 = v4

x4 ̸= v4

x5 = v5 x5 ̸= v5

Search 17

The search tree exploration

Goal of the search
Explore the solution space

x1 = v1

x2 = v2

x3 = v3 x3 ̸= v3

x2 ̸= v2

x1 ̸= v1

x4 = v4 x4 ̸= v4

x5 = v5 x5 ̸= v5

Search 17

The search tree exploration

Goal of the search
Explore the solution space

x1 = v1

x2 = v2

x3 = v3 x3 ̸= v3

x2 ̸= v2

x1 ̸= v1

x4 = v4 x4 ̸= v4

x5 = v5

x5 ̸= v5

Search 17

The search tree exploration

Goal of the search
Explore the solution space

x1 = v1

x2 = v2

x3 = v3 x3 ̸= v3

x2 ̸= v2

x1 ̸= v1

x4 = v4 x4 ̸= v4

x5 = v5 x5 ̸= v5

Search 17

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3
s1s1

add cst: x < obj(s1)
x3 ̸= v3

s2s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3

s1s1

add cst: x < obj(s1)

x3 ̸= v3

s2s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3

s1s1

add cst: x < obj(s1)

x3 ̸= v3

s2s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3

s1

s1

add cst: x < obj(s1)

x3 ̸= v3

s2s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3

s1

s1

add cst: x < obj(s1)

x3 ̸= v3

s2s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3

s1

s1

add cst: x < obj(s1)

x3 ̸= v3

s2

s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3

s1

s1

add cst: x < obj(s1)

x3 ̸= v3

s2

s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3

s1

s1

add cst: x < obj(s1)

x3 ̸= v3

s2

s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3

s1

s1

add cst: x < obj(s1)

x3 ̸= v3

s2

s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3

s1

s1

add cst: x < obj(s1)

x3 ̸= v3

s2

s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3

s1

s1

add cst: x < obj(s1)

x3 ̸= v3

s2

s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3

s1

s1

add cst: x < obj(s1)

x3 ̸= v3

s2

s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Search tree for an optimal value

obj: minimum x

x1 = v1

x2 = v2

x3 = v3

s1

s1

add cst: x < obj(s1)

x3 ̸= v3

s2

s2

add cst: x < obj(s2)

x2 ̸= v2

x1 ̸= v1

s3

x4 = v4

add cst: x < obj(s3)

x4 ̸= v4

optimal solution proven!

Search 18

Backtracking structures

How to go back in the search?

Before decision, set ”state save points” you can go back to

Copying Trailing

• save: copy the required part of the state

• restore: replace the state with the copy

• save: create restoring operation for

each modification since last save

• restore: revert the modifications one by

one

Propagators can benefit by having incremental algorithms

Search 19

Huge search space

What to do when the search space is too big?

Search 20

Huge search space

What to do when the search space is too big?

Search 20

Huge search space

What to do when the search space is too big?

Search 20

Huge search space

What to do when the search space is too big?

Search 20

Huge search space

What to do when the search space is too big?

Search 20

Huge search space

What to do when the search space is too big?

Search 20

Huge search space

What to do when the search space is too big?

Search 20

Huge search space

What to do when the search space is too big?

Search 20

Incomplete search

Meta-heuristics:

• Resets with non-deterministic searches

• Large Neighborhood search (LNS): search for a

good solution, relax part of the solution, restart

from the partial solution

• Portfolio searches: try multiple search

strategies for a bit of time

• ...

Idea: try a diversity of smaller subspace

No guarantee of optimality!

Search 21

Incomplete search

Meta-heuristics:

• Resets with non-deterministic searches

• Large Neighborhood search (LNS): search for a

good solution, relax part of the solution, restart

from the partial solution

• Portfolio searches: try multiple search

strategies for a bit of time

• ...

Idea: try a diversity of smaller subspace

No guarantee of optimality!

Search 21

Incomplete search

Meta-heuristics:

• Resets with non-deterministic searches

• Large Neighborhood search (LNS): search for a

good solution, relax part of the solution, restart

from the partial solution

• Portfolio searches: try multiple search

strategies for a bit of time

• ...

Idea: try a diversity of smaller subspace

No guarantee of optimality!

Search 21

Incomplete search

Meta-heuristics:

• Resets with non-deterministic searches

• Large Neighborhood search (LNS): search for a

good solution, relax part of the solution, restart

from the partial solution

• Portfolio searches: try multiple search

strategies for a bit of time

• ...

Idea: try a diversity of smaller subspace

No guarantee of optimality!

Search 21

Incomplete search

Meta-heuristics:

• Resets with non-deterministic searches

• Large Neighborhood search (LNS): search for a

good solution, relax part of the solution, restart

from the partial solution

• Portfolio searches: try multiple search

strategies for a bit of time

• ...

Idea: try a diversity of smaller subspace

No guarantee of optimality!

Search 21

Incomplete search

Meta-heuristics:

• Resets with non-deterministic searches

• Large Neighborhood search (LNS): search for a

good solution, relax part of the solution, restart

from the partial solution

• Portfolio searches: try multiple search

strategies for a bit of time

• ...

Idea: try a diversity of smaller subspace

No guarantee of optimality!

Search 21

Incomplete search

Meta-heuristics:

• Resets with non-deterministic searches

• Large Neighborhood search (LNS): search for a

good solution, relax part of the solution, restart

from the partial solution

• Portfolio searches: try multiple search

strategies for a bit of time

• ...

Idea: try a diversity of smaller subspace

No guarantee of optimality!

Search 21

Incomplete search

Meta-heuristics:

• Resets with non-deterministic searches

• Large Neighborhood search (LNS): search for a

good solution, relax part of the solution, restart

from the partial solution

• Portfolio searches: try multiple search

strategies for a bit of time

• ...

Idea: try a diversity of smaller subspace

No guarantee of optimality!

Search 21

Incomplete search

Meta-heuristics:

• Resets with non-deterministic searches

• Large Neighborhood search (LNS): search for a

good solution, relax part of the solution, restart

from the partial solution

• Portfolio searches: try multiple search

strategies for a bit of time

• ...

Idea: try a diversity of smaller subspace

No guarantee of optimality!

Search 21

Incomplete search

Meta-heuristics:

• Resets with non-deterministic searches

• Large Neighborhood search (LNS): search for a

good solution, relax part of the solution, restart

from the partial solution

• Portfolio searches: try multiple search

strategies for a bit of time

• ...

Idea: try a diversity of smaller subspace

No guarantee of optimality!

Search 21

Incomplete search

Meta-heuristics:

• Resets with non-deterministic searches

• Large Neighborhood search (LNS): search for a

good solution, relax part of the solution, restart

from the partial solution

• Portfolio searches: try multiple search

strategies for a bit of time

• ...

Idea: try a diversity of smaller subspace

No guarantee of optimality!

Search 21

Hybrids of techniques

MDD propagators (with DD input)

Table constraint

W X Y Z

1 2 1 1

1 1 1 1

1 1 2 2

2 3 1 1

2 3 2 2

2 1 3 2

3 2 3 2

MDD constraint

Root

Sink

1 2 3

2 1 3 1 2

1 1 2 3

1 2

1

1

2

2

W

X

Y

Z

Reference: ”Compact-MDD: Efficiently Filtering (s) MDD Constraints with Reversible Sparse Bit-sets”,

by H. Verhaeghe, C. Lecoutre, P. Schaus, IJCAI18

22

MDD propagators (with DD input)

Table constraint

W X Y Z

1 2 1 1

1 1 1 1

1 1 2 2

2 3 1 1

2 3 2 2

2 1 3 2

3 2 3 2

MDD constraint

Root

Sink

1 2 3

2 1 3 1 2

1 1 2 3

1 2

1

1

2

2

W

X

Y

Z

Reference: ”Compact-MDD: Efficiently Filtering (s) MDD Constraints with Reversible Sparse Bit-sets”,

by H. Verhaeghe, C. Lecoutre, P. Schaus, IJCAI18
22

MDD propagators (with DD input)

Table constraint

W X Y Z

1 2 1 1

1 1 1 1

1 1 2 2

2 3 1 1

2 3 2 2

2 1 3 2

3 2 3 2

MDD constraint

Root

Sink

1 2 3

2 1 3 1 2

1 1 2 3

1 2

1

1

2

2

W

X

Y

Z

Reference: ”Compact-MDD: Efficiently Filtering (s) MDD Constraints with Reversible Sparse Bit-sets”,

by H. Verhaeghe, C. Lecoutre, P. Schaus, IJCAI18
22

Lazy Clause Generation (with SAT clauses)

23

Proof Loging Solvers (with PB proofs)

Is the problem solvable?

Easy to prove, here is a solution!

Is the problem unsolvable?

Having no solution is not really a proof... maybe we did not find it?

Is the optimal really the optimal?

Well, I have my best so far... but again, maybe we did not find the best?

24

Proof Loging Solvers (with PB proofs)

Is the problem solvable?

Easy to prove, here is a solution!

Is the problem unsolvable?

Having no solution is not really a proof... maybe we did not find it?

Is the optimal really the optimal?

Well, I have my best so far... but again, maybe we did not find the best?

24

Proof Loging Solvers (with PB proofs)

Is the problem solvable?

Easy to prove, here is a solution!

Is the problem unsolvable?

Having no solution is not really a proof... maybe we did not find it?

Is the optimal really the optimal?

Well, I have my best so far... but again, maybe we did not find the best?

24

Proof Loging Solvers (with PB proofs)

Is the problem solvable?

Easy to prove, here is a solution!

Is the problem unsolvable?

Having no solution is not really a proof... maybe we did not find it?

Is the optimal really the optimal?

Well, I have my best so far... but again, maybe we did not find the best?

24

Proof Loging Solvers (with PB proofs)

Is the problem solvable?

Easy to prove, here is a solution!

Is the problem unsolvable?

Having no solution is not really a proof... maybe we did not find it?

Is the optimal really the optimal?

Well, I have my best so far... but again, maybe we did not find the best?

24

Portfolio Solvers

Portfolio solvers combine multiple strategies in parallel and share information

(bounds, learned clauses,...) between the threads

• Portfolio searches: Variety of searches at

the same time

• Hybrid CP-SAT-LP Or-Tools solver:

specialised solvers in parallel

Or-Tools CP-SAT-LP

25

Portfolio Solvers

Portfolio solvers combine multiple strategies in parallel and share information

(bounds, learned clauses,...) between the threads

• Portfolio searches: Variety of searches at

the same time

• Hybrid CP-SAT-LP Or-Tools solver:

specialised solvers in parallel

Or-Tools CP-SAT-LP

25

Portfolio Solvers

Portfolio solvers combine multiple strategies in parallel and share information

(bounds, learned clauses,...) between the threads

• Portfolio searches: Variety of searches at

the same time

• Hybrid CP-SAT-LP Or-Tools solver:

specialised solvers in parallel

Or-Tools CP-SAT-LP

25

Conclusion

Conclusion

Solving a problem using CP:

• Step 1: model the problem, using variables, constraints, and objective (if

one)

• Step 2: select a search heuristic based on the knowledge of the problem (or

use solver’s default)

• Step 3: solver searches for solution(s) using search strategies, fixed-point

and propagators

Constraint programming

• is modular and versatile

• can adapt to one’s needs

26

Conclusion

Solving a problem using CP:

• Step 1: model the problem, using variables, constraints, and objective (if

one)

• Step 2: select a search heuristic based on the knowledge of the problem (or

use solver’s default)

• Step 3: solver searches for solution(s) using search strategies, fixed-point

and propagators

Constraint programming

• is modular and versatile

• can adapt to one’s needs

26

Conclusion

Solving a problem using CP:

• Step 1: model the problem, using variables, constraints, and objective (if

one)

• Step 2: select a search heuristic based on the knowledge of the problem (or

use solver’s default)

• Step 3: solver searches for solution(s) using search strategies, fixed-point

and propagators

Constraint programming

• is modular and versatile

• can adapt to one’s needs

26

Conclusion

Solving a problem using CP:

• Step 1: model the problem, using variables, constraints, and objective (if

one)

• Step 2: select a search heuristic based on the knowledge of the problem (or

use solver’s default)

• Step 3: solver searches for solution(s) using search strategies, fixed-point

and propagators

Constraint programming

• is modular and versatile

• can adapt to one’s needs

26

Conclusion

Solving a problem using CP:

• Step 1: model the problem, using variables, constraints, and objective (if

one)

• Step 2: select a search heuristic based on the knowledge of the problem (or

use solver’s default)

• Step 3: solver searches for solution(s) using search strategies, fixed-point

and propagators

Constraint programming

• is modular and versatile

• can adapt to one’s needs

26

Conclusion

Solving a problem using CP:

• Step 1: model the problem, using variables, constraints, and objective (if

one)

• Step 2: select a search heuristic based on the knowledge of the problem (or

use solver’s default)

• Step 3: solver searches for solution(s) using search strategies, fixed-point

and propagators

Constraint programming

• is modular and versatile

• can adapt to one’s needs

26

Conclusion

Solving a problem using CP:

• Step 1: model the problem, using variables, constraints, and objective (if

one)

• Step 2: select a search heuristic based on the knowledge of the problem (or

use solver’s default)

• Step 3: solver searches for solution(s) using search strategies, fixed-point

and propagators

Constraint programming

• is modular and versatile

• can adapt to one’s needs

26

Conclusion

Solving a problem using CP:

• Step 1: model the problem, using variables, constraints, and objective (if

one)

• Step 2: select a search heuristic based on the knowledge of the problem (or

use solver’s default)

• Step 3: solver searches for solution(s) using search strategies, fixed-point

and propagators

Constraint programming

• is modular and versatile

• can adapt to one’s needs

26

Thank you for listening!

Any questions?

https://hverhaeghe.bitbucket.io/

27

	Model
	Search
	Solver
	Hybrids of techniques
	Conclusion

