
CP-Model-Zoo: A Natural Language
Query System for Constraint
Programming Models
Augustin Crespin, Ioannis Kostis, Hélène Verhaeghe, Pierre Schaus
UCLouvain, Louvain-la-Neuve, Belgium
augustin.crespin@student.uclouvain.be, ioannis.kostis@uclouvain.be, helene.verhaeghe@uclouvain.be, pierre.schaus@uclouvain.be

LLM-Solve Workshop

11 August 2025

mailto:augustin.crespin@student.uclouvain.be
mailto:augustin.crespin@student.uclouvain.be
mailto:augustin.crespin@student.uclouvain.be
mailto:Ioannis.Kostis@uclouvain.be
mailto:elene.verhaeghe@uclouvain.be
mailto:pierre.schaus@uclouvain.be

Holy Grail of Programming

“Constraint programming represents one of the closest
approaches computer science has yet made to the Holy
Grail of programming: the user states the problem, the

computer solves it.”

Eugene C. Freuder, “In pursuit of the Holy Grail”, 1997

1

Constraint Programming

“The user states the problem, the computer solves it.”

CP formalism Non-expert users

Requires technical knowledge

2

How to make CP accessible for everyone?

Can we make CP modeling as easy as
describing your problem in plain English?

3

Large Language Models

4

An example

5

An example

6

BUOY
CAVE
CELT
FLUB
FORK
HEMP
JUDY
JUNK
LIMN
QUIP
SWAG
VISA
WISH

O = 3

L = 3

V = 3

C = 5
C = 9

Typical errors

• Compilation errors (i.e., errors directly linked to the modelling
language)

• Data errors (i.e., wrongly mapped input data)
• Modelling error (i.e., lacking some constraints, wrong constraints)
• Unefficiant models (i.e., underuse of advanced modeling

techniques such as symmetry breaking)

Not that much of a problem for experts…

But very much for learners…
7

Declarative & Constraint Programming

“The user states the problem, the computer solves it.”

CP formalism Non-expert users

CP-Model-Zoo

8

CP-Model-Zoo

Reduced-cost system:
• Built upon already

existing repo of models
• Automatic labelling of

models

9

Our method

10

CP-Model-Zoo Pipeline

11

MiniZinc examples repository
CSPLib 67 problems

Pipeline

12

Novice: Very simple explanations in non-specific terms.
Intermediate: Domain-specific terminology.
Expert: Formal mathematical formulations

Pipeline

Generated automatically using LLM!

13

Prompts to Generate Descriptions - Intermediate

You are experienced in constraint programming and familiar with MiniZinc.
You are provided with one or more MiniZinc models representing a classic constraint
programming problem. Your task is to identify the problem and explain it in clear, intermediate-
level language. Assume the reader has some technical background but is not an expert.
If there are several models for the same problem, do not explain each one separately. Instead,
focus on explaining the overall problem. In your answer please explain:
• The name of the problem.
• A concise description of what the problem is about.
• An explanation of the main decision variables and what they represent.
• A description of the key constraints in plain language (avoid heavy mathematical notation).
• An explanation of the problem's objective (what is being minimized or maximized).
In your answer, do not include any introductory phrases (such as 'Here is the explanation of the
problem')Here is the source code of the model(s):

{source_code}
-------------- 14

Knapsack problem – Intermediate description

The problem is known as the 0/1 Knapsack Problem.
This problem is about selecting a subset of items to include in a knapsack of limited capacity, with
the goal of maximizing the total value of the selected items. Each item has a size and a profit, and
the knapsack has a limited capacity.
The main decision variables are the `x` variables, which represent whether each item is included in
the knapsack (1) or not (0).
The key constraints are:
• Each item can only be included once (or not at all), which is ensured by the `x` variables being

binary.
• The total size of the included items must not exceed the knapsack's capacity.
The objective is to maximize the total profit of the included items. In other words, the problem is to
find the optimal selection of items to put in the knapsack, given the capacity constraint, to
maximize the total value of the selected items.

15

Source Code + Synthetic Descriptions of varying expertise levels

Pipeline

Pre-computation of embeddings

16

Embedding

Words semantically close = Close in the embedding space

17

Embedding
Words semantically close = Close in the embedding space

Dense embedding: learned rather than defined

Word2Vec: binary prediction task
Given a target word t, is a candidate word c likely to occur in its context?

𝑃 positive 𝑡, 𝑐 = 𝜎 𝑡 ⋅ 𝑐 with 𝜎 𝑥 =
1

1 + 𝑒−𝑥
=

𝑒𝑥

𝑒𝑥 + 1

𝐿𝐿 θ = ෍

𝑡,𝑐∈+

𝑙𝑜𝑔 𝑃 + 𝑡, 𝑐 + ෍

𝑡,𝑐∈−

𝑙𝑜𝑔 𝑃 − 𝑡, 𝑐

18

The top-k retrieved items are the si∈ D with the highest similarity scores

𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑖∈𝒟
𝑘 𝑠𝑖𝑚 𝑒𝑞, 𝑒𝑖

 𝑒𝑖 = precomputed embedding of a string in the database
𝑒𝑞 = embedding vector of the query, computed at inference time

Pipeline

19

Similarity measure: cosine similarity
= Finding a relevant document d in a collection D of documents that best
matches a query q

cosine similarity 𝑝, 𝑞 = cos 𝑞, 𝑝 =
𝑞 ⋅ 𝑝

𝑞 ⋅ 𝑝
=

σ𝑖=1
𝑉 𝑞𝑖𝑝𝑖

σ
𝑖=1
𝑉 𝑞𝑖

2 σ
𝑖=1
𝑉 𝑝𝑖

2

20

Experiments

21

Metric of Evaluation: Mean Reciprocal Rank

MRR =
1

𝑄
෍

𝑖=1

𝑄
1

𝑟𝑎𝑛𝑘𝑖

Q = set of queries
ranki = rank position of the correct source-code model for the i-th query.

MRR = 1 ⟺ corresponding source-code model was ranked first for each query

22

Metric of Evaluation
MRR =

1

𝑄
෍

𝑖=1

𝑄
1

𝑟𝑎𝑛𝑘𝑖

MRR = (1,0+0,333+0,5+0,0)/4 = 0,45825

23

Leave-One-Out

CSPLib Description

Experiments

24

Results

25

Web Application

26

Live Demo of the Web Application

https://cp-model-zoo.info.ucl.ac.be/

27

https://cp-model-zoo.info.ucl.ac.be/
https://cp-model-zoo.info.ucl.ac.be/
https://cp-model-zoo.info.ucl.ac.be/
https://cp-model-zoo.info.ucl.ac.be/
https://cp-model-zoo.info.ucl.ac.be/

Conclusion & Future Work

28

• Supports other modeling languages

• Addition of more models

• Automatic retrieval of new models from repositories

Improvement to the application

29

• Alternative ways to evaluate the system’s practical usefulness

• Problem categorization or taxonomy as a new feature

• Adaptation of the retrieved models to the needs of user (e.g.,
using the retrieved model as a correct base for an LLM to adapt
to the actual variation of the problem at hand)

Future work could explore

30

Thank you for listening!

Any questions? Suggestions?

https://hverhaeghe.bitbucket.io/

https://cp-model-zoo.info.ucl.ac.be/

31

https://cp-model-zoo.info.ucl.ac.be/
https://cp-model-zoo.info.ucl.ac.be/
https://cp-model-zoo.info.ucl.ac.be/
https://cp-model-zoo.info.ucl.ac.be/
https://cp-model-zoo.info.ucl.ac.be/

	Slide 0: CP-Model-Zoo: A Natural Language Query System for Constraint Programming Models
	Slide 1: Holy Grail of Programming
	Slide 2: Constraint Programming
	Slide 3: How to make CP accessible for everyone?
	Slide 4: Large Language Models
	Slide 5: An example
	Slide 6: An example
	Slide 7: Typical errors
	Slide 8: Declarative & Constraint Programming
	Slide 9: CP-Model-Zoo
	Slide 10
	Slide 11: CP-Model-Zoo Pipeline
	Slide 12: Pipeline
	Slide 13: Pipeline
	Slide 14: Prompts to Generate Descriptions - Intermediate
	Slide 15: Knapsack problem – Intermediate description
	Slide 16: Pipeline
	Slide 17: Embedding
	Slide 18: Embedding
	Slide 19: Pipeline
	Slide 20: Similarity measure: cosine similarity
	Slide 21
	Slide 22: Metric of Evaluation: Mean Reciprocal Rank
	Slide 23: Metric of Evaluation
	Slide 24: Experiments
	Slide 25: Results
	Slide 26
	Slide 27: Live Demo of the Web Application
	Slide 28
	Slide 29: Improvement to the application
	Slide 30: Future work could explore
	Slide 31: Thank you for listening! Any questions? Suggestions?

